Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Velocity dependence of collisional alignment of oxygen molecules in gaseous expansions

Abstract

THE orientational dependence of molecular interactions has long been recognized as central to an understanding of reaction mechanisms and of collisions in the gas phase and at surfaces. Studies of orientation effects have recently become possible owing to the development of techniques for aligning molecules. 'Brute-force' methods using electric or magnetic fields can induce alignment of molecules with dipole moments1,2, and polarized-absorption approaches3 can be used in cases where there are suitable molecular transitions; but one of the simplest and most general methods involves the supersonic expansion of molecular beams seeded with molecules that induce rotational alignment—selection of specific rotational states—by collisions4–12. Here we use such an approach to induce strong rotational alignment of oxygen molecules in a beam seeded with various other gases at close to atmospheric pressure. Most significantly, we find that the degree of alignment depends on the velocity of the molecules in the supersonic expansion—fast molecules are much more highly aligned than slower ones, and the velocity of maximum alignment can be altered by changing the gas mixture. In this way, we can prepare rotationally aligned molecules with well defined velocities, opening up new possibilities for experiments in molecular dynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sinha, M. P., Caldwell, C. D. & Zare, R. N. J. chem. Phys. 61, 491–503 (1975).

    Article  ADS  Google Scholar 

  2. Rubahn, H. G. & Toennies, J. P. J. chem. Phys. 89, 287–294 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Hefter, U., Ziegler, G., Mattheus, A., Fischer, A., & Bergmann, K. J. chem. Phys. 85, 286–302 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Visser, A. G., Bekooy, J. P., van der Meij, L. K., de Vreugd, C. & Korving, J. J. chem. Phys. 20, 391–408 (1977).

    CAS  Google Scholar 

  5. Sanders, W. R. & Anderson, J. B. J. phys. Chem. 88, 4479–4484 (1984).

    Article  CAS  Google Scholar 

  6. Pullman, D. P. & Herschbach, D. R. J. chem. Phys. 90, 3881–3883 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Pullman, D. P., Friedrich, B. & Herschbach, D. R. J. chem. Phys. 93, 3224–3236 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Friedrich, B., Pullman, D. P. & Herschbach, D. R. J. phys. Chem. 95, 8118–8129 (1991).

    Article  CAS  Google Scholar 

  9. Saleh, H. J. & McCaffery, A. J. J. chem. Soc. Faraday Trans. 89, 3217–3221 (1993).

    Article  CAS  Google Scholar 

  10. Weida, M. J. & Nesbitt, D. J. J. chem. Phys. 100, 6372–6385 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Loesch, H. J. & Remscheid, A. J. chem. Phys. 93, 4779–4790 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Friedrich, B. & Herschbach, D. R. Nature 353, 412–414 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Gorter, C. J. Naturwissenschaften 26, 140 (1938).

    Article  ADS  CAS  Google Scholar 

  14. Beenakker, J. J. M. & McCourt, F. R. A. Rev. phys. Chem. 21, 47–72 (1970).

    Article  ADS  CAS  Google Scholar 

  15. Aquilanti, V. & Grossi, G. Lett. Nuovo Cimento 42, 157–162 (1985).

    Article  Google Scholar 

  16. Aquilanti, V., Beneventi, L., Grossi, G. & Vecchiocattivi, F. J. chem. Phys. 89, 751–761 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Aquilanti, V., Cavalli, S., Grossi, G. & Anderson, R. W. J. phys. Chem 95, 8184–8193 (1991).

    Article  CAS  Google Scholar 

  18. Aquilanti, V., Candori, R. & Pirani, F. J. chem. Phys. 89, 6157–6164 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Aquilanti, V., Candori, R., Mariani, L., Pirani, F. & Liuti, G. J. phys. Chem. 93, 130–135 (1989).

    Article  CAS  Google Scholar 

  20. Aquilanti, V., Luzzatti, E., Pirani, F. & Volpi, G. G. J. chem. Phys. 89, 6165–6175 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Aquilanti, V., Candori, R., Cappelletti, D., Luzzatti, E. & Pirani, F. Chem. Phys. 145, 293–305 (1990).

    Article  CAS  Google Scholar 

  22. Aquilanti, V., Candori, R., Cappelletti, D., Lorent, V. & Pirani, F. Chem. Phys. Lett. 192, 145–152 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Aquilanti, V., Cappelletti, D., Lorent, V., Luzzatti, E. & Pirani, F. J. phys. Chem. 97, 2063–2071 (1993).

    Article  CAS  Google Scholar 

  24. Aquilanti, V., Cappelletti, D. & Pirani, F. J. Chem. Soc., Faraday Trans. 89, 1467–1474 (1993).

    Article  CAS  Google Scholar 

  25. Amirav, A., Even, U., Jortner, J. & Kleinman, L. J. chem. Phys. 73, 4217–4233 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Mettes, J., Heijmen, B. & Reuss, J. Chem. Phys. 87, 1–8 (1984).

    Article  CAS  Google Scholar 

  27. Kuebler, N. A., Robin, M. B., Yang, J. J., Gedanken, A. & Herrick, D. R. Phys. Rev. A38, 737–749 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Matsumoto, T. & Kuwata, K. Chem. Phys. Lett. 171, 314–318 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Tinkham, M. & Strandberg, M. W. P. Phys. Rev. 97, 951–966 (1955).

    Article  ADS  CAS  Google Scholar 

  30. Kuan, C. Y., Mayne, H. R. & Wolf, R. J. Chem. Phys. Lett. 133, 415–419 (1987).

    Article  ADS  CAS  Google Scholar 

  31. Jacobs, D. C., Kolasinski, K. W., Madix, R. J. & Zare, R. N. J. chem. Phys. 87, 5038–5039 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aquilanti, V., Ascenzi, D., Cappelletti, D. et al. Velocity dependence of collisional alignment of oxygen molecules in gaseous expansions. Nature 371, 399–402 (1994). https://doi.org/10.1038/371399a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/371399a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing