Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

How does a protein fold?

Abstract

THE number of all possible conformations of a polypeptide chain is too large to be sampled exhaustively. Nevertheless, protein sequences do fold into unique native states in seconds (the Levinthal paradox). To determine how the Levinthal paradox is resolved, we use a lattice Monte Carlo model in which the global minimum (native state) is known. The necessary and sufficient condition for folding in this model is that the native state be a pronounced global minimum on the potential surface. This guarantees thermodynamic stability of the native state at a temperature where the chain does not get trapped in local minima. Folding starts by a rapid collapse from a random-coil state to a random semi-compact globule. It then proceeds by a slow, rate-determining search through the semi-compact states to find a transition state from which the chain folds rapidly to the native state. The elements of the folding mechanism that lead to the resolution of the Levinthal paradox are the reduced number of conformations that need to be searched in the semi-compact globule (˜1010 versus ˜1016 for the random coil) and the existence of many (˜103) transition states. The results have evolutionary implications and suggest principles for the folding of real proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Creighton, T. E. (ed.) Protein Folding (Freeman, New York, 1992).

  2. Levinthal, C. in Mossbauer Spectroscopy in Biological Systems (eds Debrunner, P., Tsibris, J. C. M. & Münck, E.) 22–24 (Univ. Illinois Press, Urbana, 1969).

    Google Scholar 

  3. Shakhnovich, E., Farztdinov, G., Gutin, A. M. & Karplus, M. Phys. Rev. Lett. 67, 1665–1668 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Šali, A., Shakhnovich, E. I. & Karplus, M. J. molec. Biol. 235, 1614–1636 (1994).

    Article  Google Scholar 

  5. Harding, M., Williams, D. & Woolfson, D. Biochemistry 30, 3120–3128 (1991).

    Article  CAS  Google Scholar 

  6. Wetlaufer, D. B. Proc. natn. Acad. Sci. U.S.A. 70, 697–701 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Kim, P. & Baldwin, R. A. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  8. Gõ, N. & Abe, H. Biopolymers 20, 1013–1031 (1981).

    Article  Google Scholar 

  9. Honeycutt, J. D. & Thirumalai, D. Biopolymers 32, 695–709 (1992).

    Article  CAS  Google Scholar 

  10. Bryngelson, J. D. & Wolynes, P. G. J. phys. Chem. 93, 6902–6915 (1989).

    Article  CAS  Google Scholar 

  11. Shakhnovich, E. I. & Gutin, A. M. Biophys. Chem. 34, 187–199 (1989).

    Article  CAS  Google Scholar 

  12. Dill, K. A. Biochemistry 24, 1501–1509 (1985).

    Article  CAS  Google Scholar 

  13. Dilorio, E. E. et al. Proc. natn. Acad. Sci. U.S.A. 90, 2025–2029 (1993).

    Article  ADS  Google Scholar 

  14. Stetter, K. O. in Frontiers of Life (eds Trân Thanh Vân, J. K., Mounolou, J. C., Schnieder, J. & McKay, C.) 195–212 (Editions Frontières, Gif-sur-Yvette, France, 1992).

    Google Scholar 

  15. Gõ, N. & Abe, H. Adv. Biophys. 18, 149–164 (1984).

    Article  Google Scholar 

  16. Bryngelson, J. D. & Wolynes, P. G. Proc. natn. Acad. Sci. U.S.A. 84, 7524–7528 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Karplus, M. & Weaver, D. L. Nature 260, 404–406 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Taketomi, H. & Gõ, N. Int. J. Peptide Prot. Res. 7, 445–449 (1975).

    Article  CAS  Google Scholar 

  19. Miyazawa, S. & Jernigan, R. L. Macromolecules 18, 534–552 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. J. chem. Phys. 21, 1098–1092 (1953).

    Article  Google Scholar 

  21. Sykes, M. F. J. chem. Phys. 39, 410–412 (1963).

    Article  ADS  Google Scholar 

  22. Loncharich, R. J. & Brooks, B. R. J. molec. Biol. 215, 439–455 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

S˘ali, A., Shakhnovich, E. & Karplus, M. How does a protein fold?. Nature 369, 248–251 (1994). https://doi.org/10.1038/369248a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369248a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing