Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stereoselectivity of DNA catenane fusion by resolvase

Abstract

COMMUNICATIONS between distant sites on DNA often depend on the way in which the sites are connected1,2. For example, site-specific recombination catalysed by Tn3 resolvase is most efficient when the 114-base-pair res recombination sites are directly repeated in the same DNA molecule3. In vitro a supercoiled plasmid substrate containing two directly repeated res sites gives a resolution product in which the two recombinant circles are topologically linked as a simple (two-noded) catenane (Fig. la). Resolvase is highly selective in forming this product rather than unlinked circles or more complex catenanes. It does not catalyse recombination between sites on separate supercoiled molecules, or between inverted sites in the same supercoiled molecule3–5. Tn3 resolution removes four negative supercoils from the substrate, an energetically favourable change which may drive the reaction6: in relaxed or nicked circular substrates, resolution is incomplete and slower. Resolvase can catalyse fusion of the circles of a nicked or relaxed catenane, giving a single unknotted circular product6,7. The fusion is the precise topological reversal of resolution, introducing four negative supercoils into a relaxed catenane substrate6, and should therefore not proceed if the catenane is already negatively supercoiled. Here we study recombination between res sites in non-supercoiled DNA circles linked into simple catenanes. We used (+2) and (−2) catenanes, which differ only in the direction in which one circle is threaded through the other (Fig. 2a). Although stereoselectivity is a feature of enzyme catalysis, it is not obvious how resolvase can distinguish between these subtly different catenane diastereomers. A model for the intertwining of the res site DNA in the catalytically active complex4,7 predicts that only the (−2) catenane will recombine, giving unknotted and 4-noded knot circular products. We have confirmed this prediction for the Tn3 and Tn21 resolvases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gellert, M. & Nash, H. A. Nature, 325, 401–404 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Wang, J. C. & Giaever, G. N. Science, 240, 300–304 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Hatfull, G. F. & Grindley, N. D. F. in Genetic Recombination (eds Kucherlapati, R. & Smith, G. R.) 357–396 (Am. Soc. Microbiol., Washington DC, 1988)

    Google Scholar 

  4. Stark, W. M., Boocock, M. R. & Sherratt, D. J. Trends Genet. 5, 304–309 (1989).

    Article  CAS  Google Scholar 

  5. Reed, R. R. Cell 25, 713–719 (1981).

    Article  CAS  Google Scholar 

  6. Stark, W. M., Sherratt, D. J. & Boocock, M. R. Cell 58, 779–790 (1989).

    Article  CAS  Google Scholar 

  7. Boocock, M. R., Brown, J. L. & Sherratt, D. J. UCLA Symp molec. cell. Biol. 47, 703–718 (1987).

    CAS  Google Scholar 

  8. Wasserman, S. A. & Cozzarelli, N. R. Proc. natn. Acad. Sci. U.S.A. 82, 1079–1083 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Wasserman, S. A., Dungan, J. M. & Cozzarelli, N. R. Science 229, 171–174 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Stark, W. M., Grindley, N. D. F., Hatfull, G. F. & Boocock, M. R. EMBO J. 10, 3541–3548 (1991).

    Article  CAS  Google Scholar 

  11. Benjamin, H. W. & Cozzarelli, N. R. J. biol. Chem. 165, 6441–6447 (1990).

    Google Scholar 

  12. Mizuuchi, K., Gellert, M., Weisberg, R. A. & Nash, H. A. J. molec. Biol. 141, 485–494 (1980).

    Article  CAS  Google Scholar 

  13. Pollock, T. J. & Nash, H. A. J. molec. Biol. 170, 1–18 (1983).

    Article  CAS  Google Scholar 

  14. Beatty, L. G., Babineau-Clary, D., Hogrefe, C. & Sadowski, P. D. J. molec. Biol. 188, 529–544 (1986).

    Article  CAS  Google Scholar 

  15. Abremski, K. & Hoess, R. H. J. molec. Biol. 184, 211–220 (1985).

    Article  CAS  Google Scholar 

  16. Boocock, M. R., Brown, J. L. & Sherratt, D. J. Biochem. Soc. Trans. 14, 214–216 (1986).

    Article  CAS  Google Scholar 

  17. Parker, C. N. & Halford, S. E. Cell 66, 781–791 (1991).

    Article  CAS  Google Scholar 

  18. Castell, S. E., Jordan, S. L. & Halford, S. E. Nucleic Acids Res. 14, 7213–7226 (1986).

    Article  CAS  Google Scholar 

  19. Craigie, R. & Mizuuchi, K. Cell 45, 793–800 (1986).

    Article  CAS  Google Scholar 

  20. Wasserman, S. A., White, J. H. & Cozzarelli, N. R. Nature 334, 448–450 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, W., Parker, C., Halford, S. et al. Stereoselectivity of DNA catenane fusion by resolvase. Nature 368, 76–78 (1994). https://doi.org/10.1038/368076a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368076a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing