Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The instability of a vaporization front in hot porous rock

Abstract

IN many geothermal systems, water migrates into vapour-dominated porous rock either through natural recharge or through forced injection of water from a well1–5. If the host rock is initially very hot, then a fraction of this injected water vaporizes6,7; as the water injection rate increases, the fraction which vaporizes decreases7. For modelling purposes, it is generally assumed that liquid–vapour interfaces in hot porous rocks are planar and stable6,7. But we show here, both theoretically and experimentally, that if a sufficient fraction of the liquid vaporizes, the interface can become unstable. The resulting 'fingering' instability can itself be stabilized: at short wavelengths by thermal diffusion, and at long wavelengths by the pressure increase caused by the excess vaporization at the tips of the fingers. These liquid fingers migrate through the porous rock much more rapidly than does a planar liquid front, and could therefore limit the time during which vapour may be extracted for geothermal power applications. We suggest that an optimal water injection rate for geothermal energy production may be that for which the interface is just stable, thereby maximizing the fraction of liquid which vaporizes, while suppressing the fingering instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. White, D. E., Muffler, L. J. P. & Truesdell, A. H. Econ. Geol. 66, 75–97 (1971).

    Article  CAS  Google Scholar 

  2. Martini, M., Piccardi, G. & Cellini-Legittimo, P. Bull. volcan. 44, 109–113 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Bodvarrson, G. Geothermics 1, 63–66 (1972).

    Article  Google Scholar 

  4. Schroeder, R. C., O'Sullivan, M. J., Pruess, K., Celati, R. & Ruffilli, C. Geothermics 11, 93–120 (1982).

    Article  Google Scholar 

  5. Enedy, S., Enedy, K. & Manney, J. Proc. Stanford Workshop Geotherm. Reservoir Engng Vol. 16 (Stanford Geothermal Program, Stanford, California, 1991).

    Google Scholar 

  6. Pruess, K., Calore, C., Celati, R. & Wu, Y. S. Int. J. Heat Mass Transfer 30, 2595–2602 (1987).

    Article  Google Scholar 

  7. Woods, A. W. & Fitzgerald, S. D. J. Fluid Mech. 251, 563–579 (1993).

    Article  ADS  CAS  Google Scholar 

  8. Elder, J. Geothermal Systems (Academic, London, 1981).

    Google Scholar 

  9. Grant, M. A., Donaldson, I. G. & Bixley, P. F. Geothermal Reservoir Engineering (Academic, New York, 1982).

    Google Scholar 

  10. Kestin, J. Sourcebook on the Production of Electricity from Geothermal Energy (US Dept. of Energy, Washington DC, 1980).

    Book  Google Scholar 

  11. Truesdell, A. H. & White, D. E. Geothermics 2, 154–173 (1973).

    Article  CAS  Google Scholar 

  12. Brown, G. & Rymer, H. Nature 339, 370–373 (1989).

    Article  ADS  Google Scholar 

  13. Cline, J. S., Bodnar, R. J. & Rimstidt, J. D. J. geophys. Res. 97, 9085–9103 (1992).

    Article  ADS  CAS  Google Scholar 

  14. Hemley, J. J. & Hunt, J. P. Econ. Geol. 87, 23–43 (1992).

    Article  CAS  Google Scholar 

  15. Kerr, R. A. Science 253, 134–135 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Enedy, K. Geotherm. Resour. Trans. 13, 383–391 (1989).

    Google Scholar 

  17. Schubert, G., Strauss, J. M. & Grant, M. A. Nature 287, 423–425 (1980).

    Article  ADS  Google Scholar 

  18. Saffman, P. G. & Taylor, G. I. Proc. R Soc. A245, 312–329 (1958).

    ADS  CAS  Google Scholar 

  19. Hickernell, F. J. & Yortsos, Y. C. Stud. appl. Math. 74, 93–115 (1986).

    Article  MathSciNet  Google Scholar 

  20. Haywood, R. W. Thermodynamic Tables in SI (metric) Units (Cambridge Univ. Press, 1972).

    Google Scholar 

  21. Weast, R. C. Handbook of Chemistry and Physics (Chemical Rubber Co., 1972).

    Google Scholar 

  22. The Petroleum Handbook (Royal Dutch Shell Group, Balding & Mansell, Wisbech, UK, 1959).

  23. Young, J. B. J. Engng Gas Turbines Power 110, 1–7 (1988).

    Article  CAS  Google Scholar 

  24. Hinch, J. Perturbation Methods (Cambridge Univ. Press 1991).

    Book  Google Scholar 

  25. Mullins, W. W. & Sekerka, R. F. J. appl. Phys. 35, 444–451 (1964).

    Article  ADS  Google Scholar 

  26. Tan, C. T. & Homsy, G. M. Phys. Fluids 29, 3549–3556 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, S., Woods, A. The instability of a vaporization front in hot porous rock. Nature 367, 450–453 (1994). https://doi.org/10.1038/367450a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367450a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing