Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Restoration of function by replacement of spinal cord segments in the rat

Abstract

RECONSTRUCTION of a severed mammalian spinal cord with restoration of function has so far not been achieved1–12, although structural and functional restitution after spinal transection has been successful in some lower vertebrates12–14. In quail–chick and chick–chick chimaeras, spinal cord segments were found to be functional after replacement by isotopic and isochronic grafting of the neural tube15,16. Here we achieve such a replacement in neonatal rats under less restricted topological and temporal conditions than were necessary for the avian chimaeras. The replaced segments united with the host spinal cord and promoted robust growth and regrowth of axons across the graft, enabling neural connections to be reconstructed that were hardly distinguishable from normal. The animals with replaced segments could walk, run and climb with almost normal hind–forelimb coordination. This functional restoration in these animals appeared to be permanent, raising the possibility of therapeutic application in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ramón y Cajal, S. Degeneration and Regeneration of the Nervous System (Hafner, New York, 1959).

    Google Scholar 

  2. Björklund, A. Trends Neurosci. 14, 319–322 (1991).

    Article  Google Scholar 

  3. Richardson, P. M., McGuinness, U. M. & Aguayo, A. J. Nature 284, 264–265 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Kao, C. C., Chang, L. W. & Bloodworth, J. M. B. Jr Expl Neurol. 54, 591–615 (1977).

    Article  CAS  Google Scholar 

  5. Schnell, L. & Schwab, M. E. Nature 343, 269–272 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Reier, P. J., Bregman, B. S. & Wujek, J. R. J. comp. Neurol. 247, 275–296 (1986).

    Article  CAS  Google Scholar 

  7. Bregman, B. S., Kunkel-Bagden, E., McAtee, M. & O'Neill, A. J. comp. Neurol. 282, 355–370 (1989).

    Article  CAS  Google Scholar 

  8. Bregman, B. S. & Bernstein-Goral, H. Expl Neurol. 112, 49–63 (1991).

    Article  CAS  Google Scholar 

  9. Sieradzan, K. & Vrbová, G. Neuroscience 31, 115–130 (1989).

    Article  CAS  Google Scholar 

  10. Kunkel-Bagden, E. & Bregman, B. S. Expl Brain Res. 81, 25–34 (1990).

    Article  CAS  Google Scholar 

  11. Das, G. D. in Neural Transplantation and Regeneration (eds Das, G. D. & Wallace, R. B.) 1–61 (Springer, New York, 1986).

    Google Scholar 

  12. Guth, L., Reier, P. J., Barrett, C. P. & Donati, E. J. Trends Neurosci. 6, 20–24 (1983).

    Article  Google Scholar 

  13. Selzer, M. E. J. Physiol., Lond. 277, 395–408 (1978).

    Article  CAS  Google Scholar 

  14. Singer, M., Nordlander, R. H. & Egar, M. J. comp. Neurol. 185, 1–22 (1979).

    Article  CAS  Google Scholar 

  15. Kinutani, M. & Le Douarin, N. M. Devl Biol. 111, 243–255 (1985).

    Article  CAS  Google Scholar 

  16. Le Douarin, N. M. Trends Neurosci. 16, 64–72 (1993).

    Article  CAS  Google Scholar 

  17. Grillner, S. Physiol. Rev. 55, 247–304 (1975).

    Article  CAS  Google Scholar 

  18. Harris, W. A. Nature 339, 218–221 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Tessier-Lavigne, M., Placzek, M., Lumsden, A. G. S., Dodd, J. & Jessell, T. M. Nature 336, 775–778 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Bolz, J., Götz, M., Hübener, M. & Novak, N. Trends Neurosci. 16, 310–316 (1993).

    Article  CAS  Google Scholar 

  21. Kessel, M. & Gruss, P. Science 249, 374–379 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Itasaki, N. & Nakamura, H. Neuron 8, 787–798 (1992).

    Article  CAS  Google Scholar 

  23. Kalil, K. & Reh, T. Science 205, 1158–1161 (1979).

    Article  ADS  CAS  Google Scholar 

  24. Kawaguchi, S., Miyata, H. & Kato, N. J. comp. Neurol. 245, 258–273 (1986).

    Article  CAS  Google Scholar 

  25. Leong, S. K., Shieh, J. Y. & Wong, W. C. J. comp. Neurol. 228, 18–23 (1984).

    Article  CAS  Google Scholar 

  26. Schreyer, D. J. & Jones, E. G. Neuroscience 7, 1837–1853 (1982).

    Article  CAS  Google Scholar 

  27. Bernstein, D. R. & Stelzner, D. J. J. comp. Neurol. 221, 382–400 (1983).

    Article  CAS  Google Scholar 

  28. Matsushita, M. & Hosoya, Y. Brain Res. 173, 185–200 (1979).

    Article  CAS  Google Scholar 

  29. Giesler, G. J. Jr, Spiel, H. R. & Willis, W. D. J. comp. Neurol. 195, 243–252 (1981).

    Article  Google Scholar 

  30. Amassian, V. E., Waller, H. J. & Macy, J. Jr Ann. N.Y. Acad. Sci. 112, 5–32 (1964).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwashita, Y., Kawaguchi, S. & Murata, M. Restoration of function by replacement of spinal cord segments in the rat. Nature 367, 167–170 (1994). https://doi.org/10.1038/367167a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367167a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing