Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-universal scaling of fracture length and opening displacement

Abstract

THE deformation of the Earth's brittle crust is dominated by the formation and growth of faults in response to tectonic loading. The scaling properties of such systems provide clues to the underlying mechanisms of fault propagation. For example, if fault growth were a self-similar process, described by a scaling law that applies in all locations1, this might imply a universal faulting mechanism governed by either constant fracture toughness or constant yield stress. Universal scaling laws have been proposed1–4, but their general applicability remains the subject of some debate5. In the natural environment, strict scale invariance can apply only between well-defined bounds6, and it is known that the Earth's crust has many distinct length scales—ranging from the grain size of rocks and the thickness of sedimentary layers up to the finite width of the seismogenic crust—each of which may vary from place to place. Here we report the scaling properties of two populations of tensile fractures in the Krafla fissure swarm of northeast Iceland (spanning nearly four orders of magnitude in length and five in displacement), which clearly show that the presence of such length scales dramatically alters the scaling behaviour. Despite the geological homogeneity of the region studied, our data cannot be described by a single scaling law.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Scholz, C. H. & Cowie, P. A. Nature 346, 837–839 (1990).

    Article  ADS  Google Scholar 

  2. Walsh, J. J. & Watterson, J. J. struct. Geol. 10, 239–247 (1988).

    Article  ADS  Google Scholar 

  3. Marret, R. & Allmendinger, R. W. J. struct. Geol. 13, 735–738 (1991).

    Article  ADS  Google Scholar 

  4. Walsh, J. J., Watterson, J. & Yielding, G. Nature 351, 391–393 (1991).

    Article  ADS  Google Scholar 

  5. King, G. & Cisternas, A. Nature 351, 350 (1991).

    Article  ADS  Google Scholar 

  6. Mandelbrot, B. B. The Fractal Geometry of Nature (Freeman, San Francisco, 1982).

    MATH  Google Scholar 

  7. Saemundsson, K. in Crustal Evolution in Northwest Britain and Adjacent Regions (eds Bowes, D. R. & Leake, B. E.) 415–432 (Steel House, Liverpool, 1978).

    Google Scholar 

  8. Björnsson, A. J. geophys. Res. 90, 10151–10162 (1985).

    Article  ADS  Google Scholar 

  9. Tryggvason, E. Bull. volcan. 47, 47–69 (1984).

    Article  ADS  Google Scholar 

  10. Einarsson, P. Tectonophysics. 189, 261–279 (1991).

    Article  ADS  Google Scholar 

  11. Opheim, J. A. & Gudmundsson, A. Geol. Soc. Am. Bull. 101, 1608–1622 (1989).

    Article  ADS  Google Scholar 

  12. Hatton, C. G. thesis, Univ. Edinburgh (1992).

  13. Hübner, H. & Jillek, W. J. Mater. Sci. 12, 117–125 (1977).

    Article  ADS  Google Scholar 

  14. Cook, R. F., Lawn, B. R. & Fairbanks, C. J. J. Am. ceram. Soc. 68, 604–615 (1985).

    Article  CAS  Google Scholar 

  15. Schmidt, R. A. & Lutz, T. J. in Fracture Mechanics Applied to Brittle Materials 166–182 (Spec. Publ. STP678, Am. Soc. Test. Mater., 1979).

    Book  Google Scholar 

  16. Ingraffea, A. R. in Fracture Mechanics of Rock (ed. Atkinson, B. K.) 71–110 (Academic, London, 1987).

    Book  Google Scholar 

  17. Rice, R. W., Freiman, S. W. & Mecholsky, J. J. J. Am. ceram. Soc. 63, 129–136 (1980).

    Article  CAS  Google Scholar 

  18. Barenblatt, G. I. Adv. appl. Mech. 7, 55 (1962).

    Article  Google Scholar 

  19. Cowie, P. A. & Scholz, C. H. J. geophys. Res. 97, 11085–11095 (1992).

    Article  ADS  Google Scholar 

  20. Gilliespie, P. A., Walsh, J. J. & Watterson, J. J. struct. Geol. 14, 1157–1172 (1992).

    Article  ADS  Google Scholar 

  21. Gudmundsson, A. Terra Nova 4, 464–471 (1992).

    Article  ADS  Google Scholar 

  22. Cowie, P. A. & Scholz, C. H. J. struct. Geol. 154, 1149–1156 (1992).

    Article  ADS  Google Scholar 

  23. Jóhannesson, H. & Saemundsson, K. Geological Map of Iceland 1:500,000 (Iceland Mus. of natural Hist. & Iceland geod. Surv., Reykjavik, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatton, C., Main, I. & Meredith, P. Non-universal scaling of fracture length and opening displacement. Nature 367, 160–162 (1994). https://doi.org/10.1038/367160a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367160a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing