Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two-electron quantization of the charge on a superconductor

Abstract

THE theoretical understanding of superconductors is based on the notion of electron pairing into Cooper pairs1. The first direct evidence for electron pairing was the observation that the flux threading a superconducting ring is always a multiple of the flux quantum, given by the ratio of Planck's constant to the Cooper-pair charge 2e (refs 2, 3). Here we report a direct measurement of the total charge on a superconducting electrode which is free to exchange electrons with a metallic reservoir through a tunnel junction. The total charge on a non-superconducting metal electrode has been shown previously4 to increase in jumps of 1e, corresponding to the addition of single electrons. We have also observed steps of 1e, with an even–odd asymmetry, for a superconducting electrode when the charging energy exceeds the energy gap between the ground and first excited superconducting state5. Our present measurements, with the charging energy below the gap, reveal charging steps strictly quantized in units of 2e, corresponding to the simultaneous tunnelling of two electrons. The 2e steps break into 1e steps when the temperature and magnetic field are increased above threshold values, corresponding to the electrostatic breaking of a single Cooper pair. Our results indicate that Cooper pairs can be manipulated in the same way as single electrons in turnstile and pump devices4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Deaver, B. S. & Fairbank, W. M. Phys. Rev. Lett. 7, 43–47 (1961).

    Article  ADS  Google Scholar 

  3. Doll, D. & Näbauer, M. Phys. Rev. Lett. 7, 51–55 (1961).

    Article  ADS  Google Scholar 

  4. Devoret, M. H., Esteve, D. & Urbina, C. Nature 360, 547–553 (1992).

    Article  ADS  Google Scholar 

  5. Lafarge, P., Joyez, P., Esteve, D., Urbina, C. & Devoret, M. H. Phys. Rev. Lett. 70, 994–998 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Grabert, H. Proc. 20th Low-Temperature Phys. Conf. (Elsevier, Amsterdam, in the press).

  7. Averin, D. V. & Likharev, K. K. in Mesoscopic Phenomena in Solids (eds Altshuler, B., Lee, P. A. & Webb, R. A.) 173 (Elsevier, Amsterdam, 1991).

    Book  Google Scholar 

  8. Fulton, T. A. & Dolan, G. J. Phys. Rev. Lett. 59, 109–113 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Averin, D. V. & Nazarov, Yu, V. Phys. Rev. Lett. 69, 1993–1996 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Tuominen, M. T., Hergenrother, J. M., Tighe, T. S. & Tinkham, M. Phys. Rev. Lett. 69, 1997–2001 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Eiles, T. M., Martinis, J. M. & Devoret, M. H. Phys. Rev. Lett. 70, 1862–1866 (1993).

    Article  ADS  CAS  Google Scholar 

  12. Tuominen, M. T., Hergenrother, J. M., Tighe, T. S. & Tinkham, M. Phys. Rev. B (in the press).

  13. Andreev, A. F. Zh. eksp. teor. Fiz. 46, 1823 (1964); also as Soviet. Phys. JETP 19, 1228–1231 (1964).

    CAS  Google Scholar 

  14. Hekking, F. W. J., Glazman, L. I., Matveev, K. A. & Shekter, R. I. Phys. Rev. Lett. 70, 4138–4141 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Skalski, S., Betbeder-Matibet, O. & Weiss, P. R. Phys. Rev. A136, 1500–1518 (1964).

    Article  ADS  CAS  Google Scholar 

  16. de Gennes, P. G. & Tinkham, M. Physics 1, 107–126 (1964).

    Article  Google Scholar 

  17. Clarke, J. in Non-equilibrium Superconductivity (eds Langenberg, D. N. & Larkin, A. I.) 1 (Elsevier, Amersterdam, 1983).

    Google Scholar 

  18. Lafarge, P. et al. Z. Phys. B85, 327–332 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafarge, P., Joyez, P., Esteve, D. et al. Two-electron quantization of the charge on a superconductor. Nature 365, 422–424 (1993). https://doi.org/10.1038/365422a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365422a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing