Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entropy-driven formation of a superlattice in a hard-sphere binary mixture

Abstract

A MIXTURE of two dissimilar species (A and B) may freeze to form a substitutionally ordered crystal, the structure of which can vary from a lattice with only a few atoms per unit cell to a complex 'superlattice'. For example, a mixture of sodium and zinc can form a solid with the AB13 structure with 112 atoms per unit cell1 (Fig. la). One might suspect that very specific energetic interactions are needed to stabilize a structure as complex as this. But recent experiments2,3 show that the AB13 structure is also formed in mixtures of spherical colloidal particles with different diameters, which interact only via simple repulsive potentials. This raises the possibility that the formation of an AB13 superlattice might be sup-ported by entropic effects alone. To investigate this possibility, we present here computer simulations of a binary mixture of hard spheres. Our calculations show that entropy alone is indeed sufficient to stabilize the AB13 phase, and that the full phase diagram of this system is surprisingly complex. Our results also suggest that vitrification or slow crystal nucleation in experimental studies of colloidal hard spheres can prevent the formation of equilibrium phases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shoemaker, D. P. et al. Acta crystallogr. 5, 637–644 (1952).

    Article  CAS  Google Scholar 

  2. Bartlett, P., Ottewill, R. H. & Pusey, P. N. J. chem. 93, 1299–1312 (1990).

    CAS  ADS  Google Scholar 

  3. Bartlett, P., Ottewill, R. H. & Pusey, P. N. Phys. Rev. Lett. 68, 3801–3804 (1992).

    Article  CAS  ADS  Google Scholar 

  4. Porter, D. A. & Easterling, K. E. Phase Transformations in Metals and Alloys (Chapman & Hall, London, 1992).

    Book  Google Scholar 

  5. Murray, M. J. & Sanders, J. V. Phil. Mag. A42, 721–740 (1980).

    Article  CAS  Google Scholar 

  6. Barrat J. L., Baus, M. & Hansen, J. P. Phys. Rev. Lett. 56, 1063–1065 (1986); J. Phys. C. 20, 1413–1430 (1987).

    Article  CAS  ADS  Google Scholar 

  7. Kranendonk, W. G. T. & Frenkel, D. Molec. Phys. 72, 679–697 (1991).

    Article  CAS  ADS  Google Scholar 

  8. Frenkel, D. in Molecular Dynamics Simulations of Statistical Mechanical Systems: Proc. 97th int. School Phys. ‘Enrico Fermi’ (eds Ciccotti, G. & Hoover, W. G.) 151–188 (North-Holland, Amsterdam, 1986).

    Google Scholar 

  9. Mansoori, G. A., Carnahan, N. F., Starling, K. E. & Leland, T. W. J. chem. Phys. 54, 1523–1525 (1971).

    Article  CAS  ADS  Google Scholar 

  10. Frenkel, D. & Ladd, A. J. C. J. chem. Phys. 81, 3188–3193 (1984).

    Article  CAS  ADS  Google Scholar 

  11. Eldridge, M. D., Madden, P. A. & Frenkel, D. Molec. Phys. 79, 105–120 (1993).

    Article  CAS  ADS  Google Scholar 

  12. Eldridge, M. D. & Madden, P. A., Molec. Phys. (in the press).

  13. Vos, W. L. et al. Nature 358, 46–48 (1992).

    Article  CAS  ADS  Google Scholar 

  14. Barrat, J. L. & Vos, W. L. J. chem. Phys. 97, 5707–5712 (1992).

    Article  CAS  ADS  Google Scholar 

  15. Loubeyre, P., Jean-Louis, M., LeToullec, R. & Charon-Gérard, L. Phys. Rev. Lett. 70, 178–181 (1993).

    Article  CAS  ADS  Google Scholar 

  16. Hachisu S. & Yoshimura, S. in Physics of Complex and Supermolecular Fluids (eds Safran, S. A. & Clark, N. A.) 221–240 (Wiley, New York, 1987).

    Google Scholar 

  17. Sanders, J. V. Phil. Mag. A42, 705–720 (1980).

    Article  CAS  Google Scholar 

  18. Bartlett, P. J. Phys.: Condensed Matter 2, 4979–4989 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eldridge, M., Madden, P. & Frenkel, D. Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 365, 35–37 (1993). https://doi.org/10.1038/365035a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/365035a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing