Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CAP interacts with RNA polymerase in solution in the absence of promoter DNA

Abstract

PROTEIN-PROTEIN interactions between transcription activator proteins and RNA polymerase or basal transcription factors have been suggested to be important for transcription activation1–8. Interactions between catabolite gene activator protein (CAP)9,10 and RNA polymerase have been proposed based on face-of-helix-dependent transcription activation by CAP11–13 and based on face-of-helix-dependent cooperative binding of CAP and RNA polymerase to promoter DNA14,15. Mutants of CAP specifically defective in transcription activation have been isolated (mutants defective in transcription activation, but not defective in DNA binding and DNA bending16–19). All such mutants contain amino-acid substitutions within a surface loop consisting of amino acids 152 to 166 of CAP16–19. Here we use the thermodynamically rigorous technique of fluorescence polarization20–23 to show that CAP interacts with RNA polymerase in solution in the absence of promoter DNA (KD.app = 2.8 x 10-7 M), whereas [Alal58]CAP, a mutant of CAP specifically defective in transcription activation, does not.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ptashne, M. Nature 335, 683–689 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Su, W., Porter, S., Kustu, S. & Echols, H. Proc. natn. Acad. Sci. U.S.A. 87, 5504–5508 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Lin, Y.-S. & Green, M. Cell 64, 971–981 (1991).

    Article  CAS  Google Scholar 

  4. Lin, Y.-S., Ha, I., Maldonado, E., Reinberg, D. & Green, M. Nature 353, 569–571 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Ingles, C. J., Shales, M., Cress, W. D., Triezenberg, S. & Greenblatt, J. Nature 351, 588–590 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Horikoshi, N. et al. Proc. natn. Acad. Sci. U.S.A. 88, 5124–5128 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Lee, W., Kao, C. C., Bryant, G., Liu, X. & Berk, A. Cell 67, 365–376 (1991).

    Article  CAS  Google Scholar 

  8. Lieberman, P. & Berk, A. Genes Dev. 5, 2441–2454 (1991).

    Article  CAS  Google Scholar 

  9. de Crombrugghe, B., Busby, S. & Buc, H. Science 224, 831–838 (1984).

    Article  ADS  CAS  Google Scholar 

  10. Schultz, S., Shields, G. & Steitz, T. Science 253, 1001–1007 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Mandecki, W. & Caruthers, M. Gene 31, 263–267 (1984).

    Article  CAS  Google Scholar 

  12. Gaston, K., Bell, A., Kolb, A., Buc, H. & Busby, S. Cell 62, 733–743 (1990).

    Article  CAS  Google Scholar 

  13. Ushida, C. & Aiba, H. Nucleic Acids Res. 18, 6325–6330 (1990).

    Article  CAS  Google Scholar 

  14. Ren, Y. L., Garges, S., Adhya, S. & Krakow, J. Proc. natn. Acad. Sci. U.S.A. 85, 4138–4142 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Straney, D., Straney, S. & Crothers, S. J. molec. Biol. 206, 41–57 (1989).

    Article  CAS  Google Scholar 

  16. Bell, A. et al. Nucleic Acids Res. 18, 7243–7250 (1990).

    Article  CAS  Google Scholar 

  17. Eschenlauer, A. & Reznikoff, W. J. Bact. 173, 5024–5029 (1991).

    Article  CAS  Google Scholar 

  18. Zhou, Y., Zhang, X. & Ebright, R. Proc. natn. Acad. Sci, U.S.A. 90, 6081–6085 (1993).

    Article  ADS  CAS  Google Scholar 

  19. Zhou, Y., Busby, S. & Ebright, R. Cell 73, 375–379 (1993).

    Article  CAS  Google Scholar 

  20. Bentley, K., Thompson, L., Klebe, R. & Horowitz, P. BioTechniques 3, 356–366 (1985).

    CAS  Google Scholar 

  21. Heyduk, T. & Lee, J. Proc. natn. Acad. Sci. U.S.A. 87, 1744–1748 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Weiel, J. & Hershey, J. Biochemistry 20, 5859–5865 (1981)

    Article  CAS  Google Scholar 

  23. Weiel, J. & Hershey, J. J. biol. Chem. 257, 1215–1220 1982).

    CAS  PubMed  Google Scholar 

  24. Ebright, R., Ebright, Y. & Gunasekera, A. Nucleic Acids Res. 17, 10295–10305 (1989).

    Article  CAS  Google Scholar 

  25. Ishihama, A. Adv. Biophys. 26, 19–31 (1990).

    Article  CAS  Google Scholar 

  26. Pinkney, M. & Hoggett, J. Biochem. J. 250, 897–902 (1988).

    Article  CAS  Google Scholar 

  27. Blazy, B., Takahashi, M. & Baudras, A. Molec. Biol. Rep. 6, 39–43 (1980).

    Article  CAS  Google Scholar 

  28. Francois, J.-C. et al. Proc. natn. Acad. Sci. U.S.A. 86, 9702–9706 (1989).

    Article  ADS  CAS  Google Scholar 

  29. Zhang, X., Gunasekera, A., Ebright, Y. & Ebright, R. J. biomol. Struct. Dyn. 9, 463–473 (1991).

    Article  CAS  Google Scholar 

  30. Hager, D., Jin, D. J. & Burgess, R., Biochemistry 29, 7890–7894 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyduk, T., Lee, J., Ebright, Y. et al. CAP interacts with RNA polymerase in solution in the absence of promoter DNA. Nature 364, 548–549 (1993). https://doi.org/10.1038/364548a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364548a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing