Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chaos reduces species extinction by amplifying local population noise

Abstract

IN the mid-1970s, theoretical ecologists were responsible for stimulating interest in nonlinear dynamics and chaos1–3. Ironically, the importance of chaos in ecology itself remains controversial4–17. Proponents of ecological chaos point to its ubiquity in mathematical models and to various empirical findings15,16,18. Sceptics12,19,20 maintain that the models are unrealistic and that the experimental evidence is equally consistent with stochastic models. More generally, it has been argued9,11,21,23 that interdemic selection and/or enhanced rates of species extinction will eliminate populations and species that evolve into chaotic regions of parameter space. Fundamental to this opinion is the belief24,25 that violent oscillations and low minimum population densities are inevitable correlates of the chaotic state. In fact, rarity is not a necessary consequence of complex dynamical behaviour26,27. But even when chaos is associated with frequent rarity, its consequences to survival are necessarily deleterious only in the case of species composed of a single population. Of course, the majority of real world species (for example, most insects) consist of multiple populations weakly coupled by migration, and in this circumstance chaos can actually reduce the probability of extinction. Here we show that although low densities lead to more frequent extinction at the local level28, the decorrelating effect of chaotic oscillations reduces the degree of synchrony among populations and thus the likelihood that all are simultaneously extinguished.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. May, R. M. Science 186, 645–647 (1974).

    Article  ADS  CAS  Google Scholar 

  2. May, R. M. Nature 216, 459–467 (1976).

    Article  ADS  Google Scholar 

  3. May, R. M. & Oster, G. F. Am. Nat. 110, 573–599 (1976).

    Article  Google Scholar 

  4. Hassell, M. P., Lawton, J. H. & May, R. M. J. Anim. Ecol. 45, 473–486 (1976).

    Google Scholar 

  5. Schaffer, W. M. & Kot, M. Trends Ecol. Evol. 1, 58–63 (1986).

    Article  CAS  Google Scholar 

  6. Nisbet, R. M., Blythe, S. & Gurney, W. S. C. Trends Ecol. Evol. 4, 238–239 (1989).

    Article  CAS  Google Scholar 

  7. Mani, G. S. Trends Ecol. Evol. 4, 239–240 (1989).

    Google Scholar 

  8. Lomnicki, A. Trends Ecol. Evol. 4, 239 (1989).

    Article  Google Scholar 

  9. Berryman, A. A. in Chaos in Ecology (eds Logan, J. A. & Hain, F. P.) 23–38 (VA Exp. Sta. Inf. Series 91–93, Blacksburg, VA, 1991).

    Google Scholar 

  10. Morris, W. F. Ecology 71, 1849–1862 (1990).

    Article  Google Scholar 

  11. Berryman, A. A. & Millstein, J. A. Trends Ecol. Evol. 4, 26–28 (1989).

    Article  CAS  Google Scholar 

  12. Ellner, S. in Chaos in Ecology (eds Logan, J. A. & Hain, F. P.) 63–90 (VA Exp. Sta. Inf. Series 91–93, Blacksburg, VA, 1991).

    Google Scholar 

  13. Sugihara, G. & May, R. M. Nature 344, 734–741 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Turchin, P. Nature 344, 660–663 (1990).

    Article  ADS  Google Scholar 

  15. Turchin, P. in Chaos in Ecology (eds Logan, J. A. & Hain, F. P.) 39–62 (VA Exp. Sta. Inf. Series 91–93, Blacksburg, VA, 1991).

    Google Scholar 

  16. Turchin, P. & Taylor, A. Ecology 73, 289–305 (1992).

    Article  Google Scholar 

  17. Logan, J. A. & Allen, J. C. A. Rev. Ent. 37, 455–477 (1992).

    Article  Google Scholar 

  18. Tillman, D. & Wedin, D. Nature 353, 653–655 (1991).

    Article  ADS  Google Scholar 

  19. Casdagli, M. Physica D. 35, 335–356 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  20. Ruelle, D. Proc. R. Soc. Lond. A 427, 241–248 (1990).

    Article  ADS  Google Scholar 

  21. Thomas, W. R., Pomerantz, M. J. & Gilpin, M. E. Ecology 61, 13–17 (1980).

    Article  Google Scholar 

  22. Mueller, L. D. & Ayala, F. J. Ecology 62, 1148–1154 (1981).

    Article  Google Scholar 

  23. Philippi, T. E., Carpenter, M. P., Case, T. J. & Gilpin, M. E. Ecology 68, 154–159 (1987).

    Article  Google Scholar 

  24. Vandermeer, J. Ecology 63, 1167–1168 (1982).

    Article  Google Scholar 

  25. Vandermeer, J. Theor. Pop. Biol. 22, 17–27 (1982).

    Article  MathSciNet  CAS  Google Scholar 

  26. Rogers, T. D. Math. Biosci. 72, 13–17 (1984).

    Article  MathSciNet  Google Scholar 

  27. Milton, J. G. & Belair, J. Theor. Pop. Biol. 37, 273–289 (1990).

    Article  Google Scholar 

  28. Pimm, S. L., Jones, J. L. & Diamond, J. Am. Nat. 132, 757–785 (1988).

    Article  Google Scholar 

  29. Iwasa, Y. & Roughgarden, J. Theor. Pop. Biol. 30, 194–214 (1986).

    Article  Google Scholar 

  30. Roughgarden, J. & Iwasa, Y. Theor. Pop. Biol. 29, 235–261 (1986).

    Article  Google Scholar 

  31. Gilpin, M. E. & Hanski, I. Metapopulation Dynamics: Empirical and Theoretical Investigations (Academic, London, 1991).

    Google Scholar 

  32. Ruelle, D. Ann. N. Y. Acad. Sci. 316, 408–416 (1979).

    Article  ADS  Google Scholar 

  33. Ricker, W. E. J. Fish. Res. Bd. Canada 11, 559–623 (1954).

    Article  Google Scholar 

  34. Collet, P. & Eckmann, J.-P. Iterated Maps on the Interval as Dynamical Systems (Birkhaüser Boston, 1980).

    MATH  Google Scholar 

  35. Crutchfield, J. P., Farmer, J. D. & Huberman, B. A. Phys. Rev. 92, 45–82 (1982).

    Google Scholar 

  36. Lichtenberg, A. J. & Lieberman, M. A. Regular and Stochastic Motion (Springer, New York, 1983).

    Book  Google Scholar 

  37. Yorke, J. A., Nathanson, N. Pianigiani, G. & Martin, J. Am J. Epidem. 109, 103–122 (1979).

    Article  CAS  Google Scholar 

  38. Hassell, M. P., Comins, H. N. & May, R. M. Nature 353, 255–258 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, J., Schaffer, W. & Rosko, D. Chaos reduces species extinction by amplifying local population noise. Nature 364, 229–232 (1993). https://doi.org/10.1038/364229a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/364229a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing