Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Activation of complement by an IgG molecule without a genetic hinge

A Correction to this article was published on 05 September 1996

Abstract

THE hinge region links the two Fab arms to the Fc portion of the IgG molecule. It mediates flexibility to the molecule and serves as a connecting structure between the two heavy chains. In addition it provides space between the Fab and Fc parts. All three properties have been proposed to be important for the ability of IgG to initiate complement activation leading to complement-mediated cell lysis (CML)1. Here we report the construction of a hinge-deleted mouse–human chimaeric IgG3 molecule with specificity for the hapten NIP (3-iodo-4-hydroxy-5-nitrophenacetyl), HM-1. HM-1 lacks the genetic hinge, but has an introduced cysteine between Ala 231 (EU numbering) and Pro 232 in the lower hinge encoded by the CH2 exon. The introduced cysteine forms a disulphide bond between the two heavy chains of the molecule. In CML, HM-1 shows a greater activity than IgG3 wild type. This is the first time an IgG molecule without a genetic hinge has been found to be active in CML. We conclude that the hinge functioning as a spacer is not a prerequisite for complement activation. Rather, its major role seems to be to connect the heavy chains to each other in the amino-terminal part of CH2. Because HM-1 is expected to have low Fab–Fc flexibility, this molecular feature is probably of no importance for complement activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Feinstein, A., Richardson, N. & Taussig, M. J. Immun. Today 7, 169–174 (1986).

    Article  CAS  Google Scholar 

  2. Sandlie, I., Aase, A., Westby, C. & Michaelsen, T. E. Eur. J. Immun. 19, 1599–1603 (1989).

    Article  CAS  Google Scholar 

  3. Dangl, J. L. et al. EMBO J. 7, 1989–1994 (1988).

    Article  CAS  Google Scholar 

  4. Duncan, A. R. & Winter, G. Nature 332, 738–740 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Nezlin, R. Adv. Immun. 48, 1–40 (1990).

    Article  CAS  Google Scholar 

  6. Burton, D. R. Molec. Immun. 22, 161–206 (1985).

    Article  CAS  Google Scholar 

  7. Michaelsen, T. E., Aase, A., Westby, C. & Sandlie, I. Scand. J. Immun. 32, 517–528 (1990).

    Article  CAS  Google Scholar 

  8. Norderhaug, L. et al. Eur. J. Immun. 21, 2379–2384 (1991).

    Article  CAS  Google Scholar 

  9. Tan, L. K., Shopes, R. J., Oi, V. T. & Morrison, S. L. Proc. natn. Acad. Sci. U.S.A. 87, 162–166 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Klein, M. et al. Proc. natn. Acad, Sci. U.S.A. 78, 524–528 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Deutsch, H. F. & Suzuki, T. J. Immun. 107, 929–930 (1971).

    Google Scholar 

  12. Marquart, M., Deisenhofer, J. & Huber, R. J. molec. Biol. 141, 369–391 (1980).

    Article  CAS  Google Scholar 

  13. Ito, W. & Arata, Y. Biochemistry 24, 6467–6474 (1985).

    Article  CAS  Google Scholar 

  14. Rajan, S. S. et al. Molec. Immun. 20, 787–899 (1983).

    Article  CAS  Google Scholar 

  15. Silverton, E. W., Navia, M. A. & Davies, D. R. Proc. natn. Acad. Sci. U.S.A. 74, 5140–5144 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Schneider, W. P., Wensel, T. G., Stryer, L. & Oi, V. T. Proc natn. Acad. Sci. U.S.A. 85, 2509–2513 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Michaelsen, T. E. Scand. J. Immun. 5, 1123–1128 (1976).

    Article  CAS  Google Scholar 

  18. Seegan, G. W. et al. Proc. natn. Acad. Sci. U.S.A. 76, 907–911 (1979).

    Article  ADS  CAS  Google Scholar 

  19. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  20. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Neuberger, M. S. et al. Nature 314, 268–270 (1985).

    Article  ADS  CAS  Google Scholar 

  22. Potter, H., Weir, L. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 81, 7161–7165 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Neuberger, M. S. EMBO J. 2, 1373–1378 (1983).

    Article  CAS  Google Scholar 

  24. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  25. Aase, A., Sandlie, I., Norderhaug, L., Brekke, O. H. and Michaelsen T. E. Eur J. Immunol., (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brekke, O., Michaelsen, T., Sandin, R. et al. Activation of complement by an IgG molecule without a genetic hinge. Nature 363, 628–630 (1993). https://doi.org/10.1038/363628a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363628a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing