Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A role for the ubiquitin-dependent proteolytic pathway in MHC class l-restricted antigen presentation

Abstract

THE degradation of most cellular proteins starts with their covalent conjugation with ubiquitin1,2. This labels the proteins for rapid hydrolysis to oligopeptides by a (26S) proteolytic complex containing a (20S) degradative particle called the proteasome3,4. Some system in the cytosol also generates antigenic peptides from endogenously synthesized cellular and viral proteins5–10. These peptides bind to newly synthesized class I major histocompatibility complex molecules in the endoplasmic reticulum and peptide/class I complexes are then transported to the cell surface for presentation to cytotoxic T cells11,12. How these peptides are produced is unknown, although a modification that promotes ubiquitin-dependent degradation of a viral protein enhances its presentation with class I13 and indirect evidence suggests a role for proteolytic particles closely resembling and perhaps identical to the proteasome4,12,14,15. Using cells that exhibit a temperature-sensitive defect in ubiquitin conjugation, we report here that nonpermissive temperature inhibited class I-restricted presentation of ovalbumin introduced into the cytosol, but did not affect presentation of an ovalbumin peptide synthesized from a minigene. These results implicate the ubiquitin-dependent proteolytic pathway in the production of antigenic peptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. A. Rev. Biochem. 61, 761–807 (1992).

    Article  CAS  Google Scholar 

  2. Rechsteiner, M. A. Rev. Cell Biol. 3, 1–30 (1987).

    Article  CAS  Google Scholar 

  3. Goldberg, A. L. Eur. J. Biochem. 203, 9–23 (1992).

    Article  CAS  Google Scholar 

  4. Goldberg, A. L. & Rock, K. L. Nature 357, 375–379 (1992).

    Article  ADS  CAS  Google Scholar 

  5. Townsend, A. R. M., Gotch, F. M. & Davey, J. Cell 42, 457–467 (1985).

    Article  CAS  Google Scholar 

  6. Townsend, A. R. M., Bastin, J., Gould, K. & Brownlee, G. G. Nature 324, 575–577 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Morrison, L. A. et al. J. exp. Med. 163, 903–921 (1986).

    Article  CAS  Google Scholar 

  8. Moore, M. W., Carbone, F. R. & Bevan, M. J. Cell 54, 777–785 (1988).

    Article  CAS  Google Scholar 

  9. Spies, T. & Demars, R. Nature 351, 323–324 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Powis, S. J. et al. Nature 354, 529–531 (1991).

    Article  ADS  Google Scholar 

  11. Yewdell, J. W. & Bennink, J. R. Adv. Immun. 52, 1–123 (1992).

    Article  CAS  Google Scholar 

  12. Monaco, J. J. Immun. Today 13, 173–179 (1992).

    Article  CAS  Google Scholar 

  13. Townsend, A. et al. J. exp. Med. 168, 1211–1224 (1988).

    Article  CAS  Google Scholar 

  14. Parham, P. Nature 348, 674–675 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Yang, Y., Waters, J. B., Fruh, K. & Peterson, P. A. Proc. natn. Acad. Sci. U.S.A. 89, 4928–4932 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Kulka, R. G. et al. J. biol. Chem. 263, 15726–15731 (1988).

    CAS  PubMed  Google Scholar 

  17. Gropper, R. et al. J. biol. Chem. 266, 3602–3610 (1991).

    CAS  PubMed  Google Scholar 

  18. Rock, K. L., Rothstein, L. & Gamble, S. J. Immun. 145, 804–811 (1990).

    CAS  PubMed  Google Scholar 

  19. Wiley, H. S. & McKinley, D. N. Meth. Enzym. 146, 402–417 (1987).

    Article  CAS  Google Scholar 

  20. Falk, K. et al. Nature 351, 290–296 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Rock, K. L., Rothstein, L. & Benacerraf, B. Proc. natn. Acad. Sci. U.S.A. 89, 8918–8922 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Townsend, A. et al. Cell 62, 285–295 (1990).

    Article  CAS  Google Scholar 

  23. Smith, M. H. & Barber, B. H. Molec. Immun. 27, 169–180 (1990).

    Article  CAS  Google Scholar 

  24. Ljunggren, H-G. et al. Nature 346, 476–480 (1990).

    Article  ADS  CAS  Google Scholar 

  25. Van Pel, A. & Boon, T. Immunogenetics 29, 75–79 (1989).

    Article  Google Scholar 

  26. Henderson, R. A. et al. Science 255, 1264–1266 (1992).

    Article  ADS  CAS  Google Scholar 

  27. Alexander, J. et al. Immunogenetics 31, 169–178 (1990).

    Article  CAS  Google Scholar 

  28. Arnold, D. et al. Nature 360, 171–173 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Momburg, F. et al. Nature 360, 174–177 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Michalek, M. T., Benacerraf, B. & Rock, K. L. J. Immun. 146, 449–456 (1991).

    CAS  PubMed  Google Scholar 

  31. Takebe, Y. et al. Molec. cell. Biol. 8, 466–472 (1988).

    Article  CAS  Google Scholar 

  32. Siu, G., Hedrick, S. M. M. & Brian, A. A. J. Immun. 143, 3813–3820 (1989).

    CAS  PubMed  Google Scholar 

  33. Dang, L. H. et al. J. Immun. 144, 4082–4091 (1990).

    CAS  PubMed  Google Scholar 

  34. Kohler, G., Fischer-Lindahl, K. & Heusser, C. Immune System 2, 202–208 (1981).

    Google Scholar 

  35. Jones, B. & Janeway, C. A. Jr Nature 292, 547–549 (1981).

    Article  ADS  CAS  Google Scholar 

  36. Chakrabati, S., Brechling, K. & Moss, B. Molec. cell. Biol. 5, 3403–3409 (1985).

    Article  Google Scholar 

  37. Moss, B. & Earl, P. in Current Protocols in Molecular Biology (eds Ausubel, F. M. et al.) 16.15.1–16.19.9 (Greene-Wiley, New York, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalek, M., Grant, E., Gramm, C. et al. A role for the ubiquitin-dependent proteolytic pathway in MHC class l-restricted antigen presentation. Nature 363, 552–554 (1993). https://doi.org/10.1038/363552a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363552a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing