Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Temperatures in the Earth's core from melting-point measurements of iron at high static pressures

Abstract

THE temperature distribution in the Earth's core places important constraints on the Earth's internal heat budget and on models of the geodynamo. The solid inner core crystallizes from a liquid outer core, consisting mainly of iron alloyed with a lighter element, at a depth of about 5,100 km (corresponding to a pressure of about 3.3 Mbar). Thus, the most reliable means of determining the temperature gradient in the core is to estimate the melting temperature of iron and iron-rich compounds at the pressure of the inner core boundary. Current estimates range from about 4,000 to 8,000 K; but these estimates, obtained from shock compression1–3, theory (discussed in ref. 4) and extrapolation of static pressure data2,3,5, are poorly constrained. Here I present melting-point measurements on iron and iron–oxygen compounds at static pressures of up to Mbar. Extrapolation of these results to 3.3 Mbar yields a temperature at the inner-core boundary of 4,850±200 K. A weak change in optical absorption observed above 2,000 K may correspond to the solid–solid phase transition found in shock experiments at 2 Mbar (ref. 1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, J. M. & McQueen, R. G. J. geophys. Res. 91, 7485–7494 (1986).

    Article  ADS  Google Scholar 

  2. Williams, Q., Jeanloz, R., Bass, J., Svendsen, B. & Ahrens, T. J. Science 236, 181–182 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Williams, Q., Knittle, E. & Jeanloz, R. J. geophys. Res. 96, 2171–2184 (1986).

    Article  ADS  Google Scholar 

  4. Anderson, O. L. Geophys. J. R. astr. Soc. (1986).

  5. Boehler, R., von Bargen, N. & Chopelas, A. J. geophys. Res. 95, 21731–21736 (1990).

    Article  ADS  Google Scholar 

  6. Ringwood, A. E. & Hibberson, W. Phys. Chem. Miner. 17, 313–319 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Shen, G., Lazor, P. & Saxena, S. K. Phys. Chem. Miner. (in the press).

  8. Lazor, P., Shen, G. & Saxena, S. K. Science. (in the press).

  9. Yoo, C. S., Akella, J. & Ruddle, C. M. Eos, 64 (1992).

  10. Boehler, R. Geophys. Res. Lett. 13, 1153–1156 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Ross, M., Young, D. A. & Grover, R. J. geophys. Res. 95, 21713–21716 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Boehler, R. Earth planet. Sci. Lett. 111, 217–227 (1992).

    Article  ADS  CAS  Google Scholar 

  13. Birch, R. Geophys. J. R. astr. Soc. 29, 373–387 (1972).

    Article  ADS  Google Scholar 

  14. Lui, L. Geophys. J. R. astr. Soc. 43, 697–705 (1975).

    Article  ADS  Google Scholar 

  15. Ohtani, E., Ringwood, A. E. & Hibberson, W. Earth planet. Sci. Lett. 71, 94–103 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Kraut, E. A. & Kennedy, G. C. Phys. Rev. Lett. 16, 608–609 (1966).

    Article  ADS  CAS  Google Scholar 

  17. Boehler, R. Phys. Rev. 27, 6754–6762 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Chopelas, A. & Boehler, R. Geophys. Res. Lett. 19, 1983–1986 (1992).

    Article  ADS  Google Scholar 

  19. Mao, H. K., Bell, P. M., Shaner, J. W. & Steinberg, D. J. J. appl. Phys. 49, 3276–3283 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehler, R. Temperatures in the Earth's core from melting-point measurements of iron at high static pressures. Nature 363, 534–536 (1993). https://doi.org/10.1038/363534a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363534a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing