Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observations of high-velocity, weakly shocked ejecta from experimental impacts

Abstract

A SMALL proportion of meteorites found on Earth are thought to come from planet-sized bodies1,2. The 'lunar meteorites' are now well established as having come from the Moon3–6 on the basis of direct comparison with lunar samples. The SNC meteorites (shergottites, nakhlites and chassignites) — seven achondrite meteorites distinguished by extremely young formation ages (<1.3 Gyr), high volatile contents, distinctive oxygen isotopic ratios and rare earth compositions — are igneous rocks, believed2 to have formed on a planet, probably Mars. But it is hard to reconcile the weakly shocked nature of many lunar and SNC meteorites with the strong shock metamorphism known to accompany impacts of the size required to eject material from a planet-sized body. Computer modelling7–10 of impacts has yet to resolve this issue, although it has been proposed9,10 that surface rarefaction near an impact can produce high-velocity, weakly shocked ejecta. Here we present the results of a cratering experiment which separates and captures the ejecta from diffe-rent regions around the impact site. We recover high-velocity, weakly shocked material as predicted9,10, lending additional support both to our understanding of cratering mechanics and to a planetary or lunar origin for the SNC and lunar meteorites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wasson, J. T. & Wetherill, G. W. in Asteroids (ed. Gehrels, T.) 926–974 (Pergamon, Oxford, 1979).

    Google Scholar 

  2. Wood C. A. & Ashwal, L. D. Proc. lunar planet. Sci. Conf. 12B, 1359–1375 (1981).

  3. Warren, P. H., Taylor, G. J. & Keil, K. Geophys. Res. Lett. 10, 779–782 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Mayeda, T. K., Clayton, R. N. & Molini-Velsko, C. A. Geophys. Res. Lett. 10, 799–800 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Bogard, D. D. & Johnson, P. Geophys. Res. Lett. 10, 801–803 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Palme, H., Sperrel, B., Weckwerth, G. & Wänke, H. Geophys. Res. Lett. 10, 817–820 (1983).

    Article  ADS  CAS  Google Scholar 

  7. O'Keefe, J. D. & Ahrens, T. J. Icarus 62, 328–338 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Vickery, A. M. & Melosh, H. J. Icarus 56, 299–318 (1983).

    Article  ADS  Google Scholar 

  9. Melosh, H. J. lcarus 59, 234–260 (1984).

    ADS  Google Scholar 

  10. Melosh, H. J. Geology 13, 144–148 (1985).

    Article  ADS  Google Scholar 

  11. Hörz, F. Contr. Mineral. Petrol. 21, 365–377 (1969).

    Article  ADS  Google Scholar 

  12. Polanskey, C. A. & Ahrens, T. J. Icarus 87, 140–155 (1990).

    Article  ADS  Google Scholar 

  13. Stöffler, D., Gault, D. E., Wedekind, J. & Polkowski, G. J. geophys. Res. 80, 4062–4077 (1975).

    Article  ADS  Google Scholar 

  14. Melosh, H.J. Impact Cratering: A Geologic Process 1–245 (Oxford Univ. Press, 1989).

    Google Scholar 

  15. Hörz, F., Ostertag, R. & Rainey, D. A. Rev. Geophys. Space Phys. 12, 309–327 (1983).

    Google Scholar 

  16. Altshuler, L. V., Krupnikov, K. K., Ledenev, B. N., Zhuchikhin, V. I. & Brazhnik, M. I. Sov. Phys. JETP 7, 606–614 (1958).

    Google Scholar 

  17. Hörz, F. in Shock Metamorphism of Natural Materials (eds French, B. M. & Short, N. M.) 243–254 (Mono, Baltimore, MD, 1968).

    Google Scholar 

  18. Müller, W. F. & Defourneaux, M. W. Geophys. 34, 483–504 (1968).

    Google Scholar 

  19. Ishibashi, T., Fujiwara, A. & Fujii, N. Jap. J. appl. Phys. i 29, 2543–2549 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Stöffler, D. Fortschr. Miner. 49, 50–113 (1972).

    Google Scholar 

  21. Gratz, A.J., et al. Phys. Chem. Minerals 19, 267–288 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Gratz, A.J., Nellis, W. J. & Hinsey, N. A. Geophys. Res. Lett. 19, 1391–1394 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratz, A., Nellis, W. & Hinsey, N. Observations of high-velocity, weakly shocked ejecta from experimental impacts. Nature 363, 522–524 (1993). https://doi.org/10.1038/363522a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/363522a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing