Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DSS4-1 is a dominant suppressor of sec4-8 that encodes a nucleotide exchange protein that aids Sec4p function

Abstract

THE protein Sec4p plays an essential role at the final stage of the yeast secretory pathway and belongs to the ras superfamily of GTP-binding proteins1, more specifically to a branch that includes Yptlp in Saccharomyces cerevisiae and rab proteins in mammalian cells. GTP-binding proteins change conformation depending on whether GTP or GDP is bound2 and can thus act as a regulatory switch. The protein remains in its inactive, GDP-bound form until exchange of GTP for GDP allows it to stimulate a downstream effector. This interaction is curtailed by GTP hydrolysis. The rates of nucleotide exchange and GTP hydrolysis can be regulated by interaction with accessory proteins3. Although GDP dissociation stimulators (GDS) have been identified that act on members of the ras and rho branches of the superfamily, less is known regarding GDSs that act on members of the Sec4/Yptl/Rab subgroup. A preliminary characterization of a Rab3A GDP dissociation stimulating activity has been presented4. We report here the use of suppressor analysis to clone a gene, dss4, encoding a 17K protein that aids Sec4p action in vivo by functioning as a GDP dissociation stimulator.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Salminen, A. & Novick, P. J. Cell 49, 527–538 (1987).

    Article  CAS  Google Scholar 

  2. Milburn, M. V. et al. Science 247, 939–945 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Bollag, G. & McCormick, F. A. Rev. Cell Biol. 7, 601–632 (1991).

    Article  CAS  Google Scholar 

  4. Burnstein, E. S. & Macara, I. G. Proc. natn. Acad. Sci. U.S.A. 89, 1154–1158 (1992).

    Article  ADS  Google Scholar 

  5. Nair, J., Müller, H., Peterson, M. & Novick, P. J. Cell Biol. 110, 1897–1909 (1990).

    Article  CAS  Google Scholar 

  6. Novick, P. J., Field, C. & Schekman, R. Cell 21, 205–215 (1980).

    Article  CAS  Google Scholar 

  7. Kabcenell, A. K., Goud, B., Northup, J. & Novick, P. J. J. biol. Chem. 265, 9366–9372 (1990).

    CAS  PubMed  Google Scholar 

  8. Studier, F. W., Rosenberg, A. H., Dunn, J. J. & Dubendorf, J. W. Meth. Enzym. 185, 60–89 (1990).

    Article  CAS  Google Scholar 

  9. Burton, J., Roberts, D., Montaldi, M., Novick, P. & De Camilli, P. Nature (in the press).

  10. Philippsen, P., Stotz, A. & Scherf, C. Meth. Enzym. 194, 169–181 (1991).

    Article  CAS  Google Scholar 

  11. Sambrook, J., Fritsch, E. F. & Maniatis, T. in Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, New York, 1989).

    Google Scholar 

  12. Emanuel, J. T. et al. Molec. cell. Biol. 6, 2476–2481 (1986).

    Article  CAS  Google Scholar 

  13. Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P. Gene 110, 119–122 (1992).

    Article  CAS  Google Scholar 

  14. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Lipman, D. & Pearson, W. Science 227, 1435–1441 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Holm, C., Meeks-Wagner, D., Fangman, W. & Botstein, D. Gene 42, 169–173 (1986).

    Article  CAS  Google Scholar 

  17. Southern, E. M. J. molec. Biol. 98, 503–518 (1975).

    Article  CAS  Google Scholar 

  18. Koerner, T. J., Hill, J. E., Myers, A. M. & Tzagoloff, A. Meth. Enzym. 194, 477–490 (1991).

    Article  CAS  Google Scholar 

  19. Hunkapiller, M., Lujan, E., Oitrander, F. & Hood, L. Meth. Enzym. 91, 227–236 (1983).

    Article  CAS  Google Scholar 

  20. Goud, B., Salminen, A., Walworth, N. C. & Novick, P. J. Cell 53, 753–768 (1988).

    Article  CAS  Google Scholar 

  21. Guesdon, J. & Avrameas, S. J. Immun. Meth. 11, 129–133 (1976).

    Article  CAS  Google Scholar 

  22. Marquart, D. W. J. Soc. ind. appl. Math. 11, 431–441 (1963).

    Article  Google Scholar 

  23. Bowser, R. & Novick, P. J. J. Cell Biol. 112, 1117–1131 (1991).

    Article  CAS  Google Scholar 

  24. Novick, P., Garrett, M., Brennwald, P. & Kabcenell, A. K. Meth. Enzym. 219, 352–362 (1992).

    Article  CAS  Google Scholar 

  25. Walworth, N., Brennwald, P., Kabcenell, A., Garrett, M. & Novick, P. Molec. cell. Biol. 12, 2017–2028 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moya, M., Roberts, D. & Novick, P. DSS4-1 is a dominant suppressor of sec4-8 that encodes a nucleotide exchange protein that aids Sec4p function. Nature 361, 460–463 (1993). https://doi.org/10.1038/361460a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361460a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing