Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Assembly of GABAA receptor subunits determines sorting and localization in polarized cells

Abstract

THE GABAA receptor, the principal inhibitory receptor in the CNS, is distributed on cell bodies, dendrites, and in some cells at axon hillocks and presynaptic terminals1–6. The dendritic distribution is crucial for shunting of excitatory synaptic inputs7,8. Molecular cloning has revealed that the GABAA receptor can be formed by a diverse set of subunits and by separately encoded subunit isoforms9,10, the expression of each of which differs in distinct areas of the central nervous system11–13 and during development14,15. Why different genes exist to encode these isoforms is not clear, but may be linked to functional differences16–19. Here we show that assembly of specific isoforms also codes for sorting and localization of the receptor complex. Confocal microscopy and immunoblot analysis of epithelial cells transfected with the complementary DNAs encoding the αl and β1 GABAA receptor subunits and probed with subunit isoform-specific antibodies show that the αl subunit is targeted to the basolateral surface, and that the β1 subunit is sorted to the apical membrane. In cells where αl and β1 isoforms are co-expressed,assembly of the β1 with the αl subunit isoform re-routes the αl subunit to the apical surface. The ability to assemble complexes of different isoform composition and to target these to specific regions of the cell surface would enable neurons to modulate GABAA receptor distribution and possibly alter the composition of its synapses in response to transcriptional levels of specific subunit isoforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Somogyi, P. et al. J. Neurosci. 9, 2197–2209 (1989).

    Article  CAS  Google Scholar 

  2. Houser, C. R. et al. J. Neurosci. 8, 1370–1376 (1988).

    Article  CAS  Google Scholar 

  3. Perez-Velazquez, J. L. et al. J. Neurosci. 9, 2163–2169 (1989).

    Article  Google Scholar 

  4. Ayoub, G. S. & Matthews, G. NeuroReport 2, 809–811 (1991).

    Article  CAS  Google Scholar 

  5. Schoch, P. et al. in GABAergic Transmission and Anxiety (eds Biggio, G. & Costa, E.) 11–19 (Raven, New York, 1986).

    Google Scholar 

  6. Marin Padilla, M. J. cogn. Neurosci. 2, 180–194 (1990).

    Article  CAS  Google Scholar 

  7. Koch, G. Poggio, T. & Torre, V. Proc. natn. Acad. Sci. U.S.A. 80, 2799–2803 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Vu, E. T. & Krasne, F. B. Science 255, 1710–1712 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Levitan, E. S. et al. Nature 335, 76–79 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Ymer, S. et al. EMBO J. 8, 1665–1670 (1989).

    Article  CAS  Google Scholar 

  11. Wisden, W. et al. Neuroscience 12, 1040–1062 (1992).

    Article  CAS  Google Scholar 

  12. Gambarana, C., Pittman, R. & Siegel, E. R. J. Neurobiol. 21, 1169–1179 (1990).

    Article  CAS  Google Scholar 

  13. Laurie, D. J. et al. J. Neurosci. 12, 1063–1076 (1992).

    Article  CAS  Google Scholar 

  14. Killisch, I. et al. Neuron 7, 927–936 (1991).

    Article  CAS  Google Scholar 

  15. Laurie, D. J., Wisden, W. & Seeburg, P. H. J. Neurosci. 12, 4151–4173 (1992).

    Article  CAS  Google Scholar 

  16. Blair, L. A. C., Levitan, E. S., Marshall, J., Dionne, V. E. & Barnard, E. A. Science 242, 577–579 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Pritchett, D. B. et al. Science 242, 1306–1308 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Pritchett, D. B. et al. Nature 338, 582–585 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Verdoorn, T. A. et al. Neuron 4, 919–928 (1990).

    Article  CAS  Google Scholar 

  20. Dotti, C. G., Parton, R. G. & Simons, K. Nature 349, 158–161 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Dotti, D. G. & Simons, K. Cell 62, 63–72 (1990).

    Article  CAS  Google Scholar 

  22. Powell, S. K. et al. Nature 353, 76–77 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Simons, K. & Wadinger-Ness, A. Cell 62, 207–217 (1990).

    Article  CAS  Google Scholar 

  24. Nelson, W. J. & Veshnock, P. J. J. Cell Biol. 103, 1751–1765 (1986).

    Article  CAS  Google Scholar 

  25. Herz, R. H. & Ojakian, G. K. J. biol. Chem. 264, 4605–4612 (1989).

    CAS  PubMed  Google Scholar 

  26. Gu, Q. et al. NeuroReport 3, 169–179 (1992).

    Article  CAS  Google Scholar 

  27. Monyer, A. et al. Science 256, 1217–1221 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Boulter, J. et al. Science 249, 1033–1035 (1990).

    Article  ADS  CAS  Google Scholar 

  29. Rodriguez-Boulan, E. & Nelson, W. J. Science 245, 718–723 (1989).

    Article  ADS  CAS  Google Scholar 

  30. Simons, K. & Fuller, S. D. A. Rev. Cell Biol. 1, 243–268 (1985).

    Article  CAS  Google Scholar 

  31. Hubbard, A. L., Steiger, B. & Bartles, J. R. A. Rev. Physiol. 51, 755–768 (1989).

    Article  CAS  Google Scholar 

  32. Wadinger-Ness, A. et al. J. Cell Biol. 111, 987–994 (1990).

    Article  Google Scholar 

  33. Bartles, J. R. et al. J. Cell Biol. 105, 1241–1248 (1987).

    Article  CAS  Google Scholar 

  34. Merlie, J. P. & Smith, M. M. J. Membr. Biol. 91, 1–10 (1986).

    Article  CAS  Google Scholar 

  35. Verrall, S. & Hall, Z. W. Cell 68, 23–31 (1992).

    Article  CAS  Google Scholar 

  36. Klausner, R. D. New Biologist 1, 3–8 (1989).

    CAS  PubMed  Google Scholar 

  37. Cole, A. J. Nature 340, 474–476 (1989).

    Article  ADS  CAS  Google Scholar 

  38. Fegner, P. L. et al. Proc. natn. Acad. Sci. U.S.A. 84, 7413–7417 (1987).

    Article  ADS  Google Scholar 

  39. Stephenson, F. A., Duggan, M. J. & Pollard, S. J. biol. Chem. 265, 21160–21165 (1990).

    CAS  PubMed  Google Scholar 

  40. Benke, D. et al. J. biol. Chem. 266, 4478–4483 (1991).

    CAS  PubMed  Google Scholar 

  41. Sargiacomo, M. et al. J. Membr. Biol. 107, 277–286 (1989).

    Article  CAS  Google Scholar 

  42. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  43. Towbin, R. et al. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Velazquez, J., Angelides, K. Assembly of GABAA receptor subunits determines sorting and localization in polarized cells. Nature 361, 457–460 (1993). https://doi.org/10.1038/361457a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/361457a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing