Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Star formation and the origin of stellar masses

Abstract

SIGNIFICANT progress has been made in recent years in the imaging of star-forming regions and in the theoretical modelling of the process of star formation1, but the physical process that determines the mass spectrum of stars remains unclear. Here we propose a model in which the protostar phase ends when the protostar embedded in a condensing core of molecular gas interacts with another protostar or star, and is ejected from its core. Such interactions must be important if stars preferentially form in dense but ultimately unbound protoclusters. In a simple model in which protostars accrete at a constant rate, the final distribution of stellar masses asymptotically approaches a simple universal distribution which is very similar to the observed mass function of stars. The general form of the mass function in this model is determined by a competition between accretion and collision rates, which provides a qualitative explanation for the differences in star formation in different environments (such as the galactic disk, globular clusters and the galactic halo).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shu, F. H., Adams, F. C. & Lizano, S. A. Rev. Astr. Astrophys. 25, 23–81 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Bertout, C. A. Rev. Astr. Astrophys. 27, 351–395 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Stahler, S. Astrophys. J. 332, 804–825 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Cayrel, R. in Physical Processes in Fragmentation and Star Formation (eds Capuzzo-Dolcetta, R., Chiosi, C. & Di Fazio, A.) 343–355 (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  5. Silk, J. & Takahashi, T. Astrophys. J. 229, 242–256 (1979).

    Article  ADS  Google Scholar 

  6. Smith, G. H. Astrophys. J. 293, 251–257 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Herbig, G. H. & Terndrup, D. M. Astrophys. J. 307, 609–618 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Strom, K. M., Margulis, M. & Strom, S. E. Astrophys. J. 346, L33–L35 (1989).

    Article  ADS  Google Scholar 

  9. Lada, E. A., DePoy, D. L., Evans, N. J. II & Gatley, I. Astrophys. J. 371, 171–182 (1991).

    Article  ADS  Google Scholar 

  10. Myers, P. C. in The Formation and Evolution of Star Clusters (ed. Janes, K.) 73–77 (Astr. Soc. Pacific, San Francisco, 1991).

    Google Scholar 

  11. Pringle, J. E. Mon. Not. R. astr. Soc. 239, 361–370 (1989).

    Article  ADS  Google Scholar 

  12. Solomon, P. M., Rivolo, A., Barrett, J. & Yahil, A. Astrophys. J. 319, 730–741 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Fuller, G. A. & Myers, P. C. Astrophys. J. 384, 523–527 (1992).

    Article  ADS  CAS  Google Scholar 

  14. McKee, C. F. Astrophys. J. 345, 782–901 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Larson, R. B. Mon. Not. R. astr. Soc. 145, 271–295 (1969).

    Article  ADS  Google Scholar 

  16. Shu, F. H. Astrophys. J. 214, 488–497 (1977).

    Article  ADS  Google Scholar 

  17. Salpeter, E. E. Astrophys. J. 121, 161–167 (1955).

    Article  ADS  Google Scholar 

  18. Scalo, J. M. Fund. Cosmic Phys. 11, 1–278 (1986).

    ADS  CAS  Google Scholar 

  19. Murray, S. D. & Lin, D. N. C. Astrophys. J. 339, 933–942 (1990).

    Article  ADS  Google Scholar 

  20. Kraft, R. P. A. Rev. Astr. Astrophys. 17, 309–343 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Nomoto, K. in The Crab Nebula and Related Supernova Remnants (eds Kafatos, M. C. & Henry, R. B. C.) 97–113 (Cambridge Univ. Press, 1985).

    Google Scholar 

  22. Genzel, R. in The Physics of Star Formation and Early Stellar Evolution (eds Lada, C. J. & Kylafis, N. D.) 155–219 (Kluwer, Dordrecht, 1991).

    Book  Google Scholar 

  23. Bally, J. & Lada, E. in The Formation and Evolution of Star Clusters (ed. Janes, K.) 35–39 (Astr. Soc. Pacific, San Francisco, 1991).

    Google Scholar 

  24. Garmany, C. D. in The Formation and Evolution of Star Clusters (ed. Janes, K.) 23–34 (Astr. Soc. Pacific, San Francisco, 1991).

    Google Scholar 

  25. Clarke, C. J. & Pringle, J. E. Mon. Not. R. astr. Soc. 249, 588–595 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podsiadlowski, P., Price, N. Star formation and the origin of stellar masses. Nature 359, 305–307 (1992). https://doi.org/10.1038/359305a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359305a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing