Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sequestration of C02 in the deep ocean by shallow injection

Abstract

To alleviate the increasing atmospheric concentrations of carbon dioxide, the principal greenhouse gas, Marchetti1 proposed that CO2, might be separated from flue gases and injected into the oceans. This, and subsequent studies2–5, emphasized the need to inject the gas at great depths or in sinking currents to avoid rapid outgassing to the atmosphere. Here we show that, to the contrary, the increase in water density that results from CO2, dissolution may be sufficient to transport the dissolved gas to lower depths even for shallow injection (in the upper 200–400 m of the ocean). If the CO2 is injected near the shore, gravity currents will carry the dense, CO2-rich waters along the bottom slope towards deep water. Shallow injection near the shore will be less expensive in terms of energy and capital than deep-ocean injection. We suggest that the coast of Norway, in the vicinity of existing oil and gas fields and of planned gas power plants, provides an example of a region where the negative buoyancy of CO2-enriched sea water would transport the gas from emission sites to the deep ocean. The effect of such measures on marine life downstream of the injection point remains to be evaluated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Marchetti, C. Clim. Change 1, 59–68 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Baes, C. F. Jr et al. in Interactions of Energy and Climate (eds Bach, W., Pankrath, J. & Williams, J.) 495–519 (Reidel, Dordrecht, 1980).

    Book  Google Scholar 

  3. Herzog, H., Golomb, D. & Zemba, S. Env. Prog. 10, 64–74 (1991).

    Article  CAS  Google Scholar 

  4. Bacastow, R. & Stegen, G. R. in Proc. Oceans '91 Vol. 3, 1654–1657 (IEEE. Honolulu, Hawaii, 1991).

    Book  Google Scholar 

  5. Stegen, G. R., Cole, K. H. & Bacastow, R. in Proc. IEA Int. Conf. Technology Responses to Global Environmental Challenges (IEA, Kyoto, Japan, 1991).

    Google Scholar 

  6. Maier-Reimer, E. in Strategies for Future Climate Research (ed. M. Latif) 319–339 (Max-Planck-Institut für Meteorologie, Hamburg, 1991).

    Google Scholar 

  7. Watanabe, H. & Iizuka, K. Metrologia 21, 19–26 (1985).

    Article  ADS  CAS  Google Scholar 

  8. King, M. B. Phase Equilibrium in Mixtures (Pergamon, Oxford, 1969).

    Google Scholar 

  9. UNESCO Technical Papers in Marine Science 36 (UNESCO, Paris, 1981).

  10. Smith, P. C. Deep Sea Res. 22, 853–873 (1975).

    Google Scholar 

  11. Chu, P. C. & Gascard, J.-C. (ed.) Deep Convection and Deep Water Formation in the Oceans (Elsevier, Amsterdam, 1991).

  12. Clift, R., Grace, J. R. & Weber, M. E. Bubbles, Drops and Particles (Academic, New York, 1978).

    Google Scholar 

  13. Tse, F. C. & Sandall, O. C. Chem. Engng. Commun. 3, 147–153 (1979).

    Article  CAS  Google Scholar 

  14. Calderbank, P. H., Johnson, D. S. L. & Loudon, J. Chem. Engng. Sci. 25, 235–256 (1970).

    Article  CAS  Google Scholar 

  15. Grace, J. R., Wairegi, T. & Brophy, J. Can. J. Chem. Engng. 56, 3–8 (1978).

    Article  CAS  Google Scholar 

  16. Killworth, P. D. Deep Sea Res. 24, 427–448 (1977).

    Article  ADS  Google Scholar 

  17. Turner, J. S. Buoyancy Effects in Fluids (Cambridge Univ. Press, 1973).

    Book  Google Scholar 

  18. Turner, J. S. in The Evolution of Physical Oceanography (ed. Warren, B. A. & Wunsch, C.) 236–262 (MIT Press, Cambridge, Massachusetts, 1981).

    Google Scholar 

  19. Stumm, W. & Morgan, J. J. Aquatic Chemistry 2nd edn (Wiley, New York, 1981).

    Google Scholar 

  20. Otto, L. et al. Neth. J. Sea Res. 26, 161–238 (1990).

    Article  Google Scholar 

  21. Bishnoi, P. R. & Robinson, D. B. Can. J. Chem. Engng. 49, 642–650 (1971).

    Article  CAS  Google Scholar 

  22. Cheney, W. & Kincaid, D. Numerical Mathematics and Computing (Brooks/Cole, Monterey, California, 1985).

    MATH  Google Scholar 

  23. UNESCO Technical Papers in Marine Science 51 (UNESCO, Paris, 1987).

  24. Weiss, R. F. Mar. Chem. 2, 203–215 (1974).

    Article  CAS  Google Scholar 

  25. Levine, I. N. Physical Chemistry (McGraw-Hill, New York, 1988).

    Google Scholar 

  26. CRC Handbook of Chemistry and Physics 68th Edn (ed. Weast, R. C.) (CRC Press, Boca Raton, Florida, 1987).

  27. Sakai, H. et al. Science 248, 1093–1096 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haugan, P., Drange, H. Sequestration of C02 in the deep ocean by shallow injection. Nature 357, 318–320 (1992). https://doi.org/10.1038/357318a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357318a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing