Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rates of mitochondrial DNA evolution in sharks are slow compared with mammals

Abstract

THE rate of mitochondrial DNA (mtDNA) evolution has been carefully calibrated only in primates1. Similarity between the primate calibration and rates estimated for other vertebrates2–4 has led to widespread assumption of a constant molecular clock in vertebrates even though this has never been rigorously tested5. We report here the examination of mtDNA sequence variation for 13 species of sharks from two orders that are well represented in the fossil record to test the constancy hypothesis. Nucleotide substitution rates in the cytochrome b and cytochrome oxidase I genes in sharks are seven- to eightfold slower than in primates or ungulates. This difference in substitution rate cannot be explained by nucleotide composition bias, codon-usage bias, selection, or choice of genes sequenced, and was confirmed by comparing species recently separated by the rise of the Isthmus of Panama. Such differences in mtDNA substitution rates among taxa indicate that it is inappropriate to use a calibration for one group to estimate divergence times or demographic parameters for another group. High-resolution studies of molecular evolutionary rates require taxon-specific calibrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, W. M., Prager, E. M., Wang, A. & Wilson, A. C. J. molec. Evol. 18, 225–239 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Wilson, A. C. et al. Biol. J. Linn. Soc. Lond. 26, 375–400 (1985).

    Article  Google Scholar 

  3. Shields, G. & Wilson, A. C. J. molec. Evol. 24, 212–217 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Irwin, D. L., Kocher, T. D. & Wilson, A. C. J. molec. Evol. 32, 128–144 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Hillis, D. M. & Moritz, C. in Molecular Systematics (eds Hillis, D. M. & Morltz, C. in Molecular Systematics (eds Hillis, D. M. & Moritz, C.) 502–515 (Sinauer, Sunderland, Massachusetts, 1990).

    Google Scholar 

  6. Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A. & Wilson, A. C. Nature 312, 282–284 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Vigilante, L., Stoneking, M., Herpending H., Hawkes, K. & Wilson, A. C. Science 253, 1503–1507 (1991).

    Article  ADS  Google Scholar 

  8. Keigwin, L. D. Jr Science 6, 350–353 (1982).

    Article  ADS  Google Scholar 

  9. Wu, W. & Li, W.-H. Proc. natn. Acad. Sci. U.S.A. 82, 1741–1745 (1985).

    Article  ADS  CAS  Google Scholar 

  10. Maisey, J. G. Zool. J. Linn. Soc. 82, 33–54 (1984).

    Article  Google Scholar 

  11. Bailey, W. J. et al. Molec. biol. Evol. 8, 155–184 (1991).

    CAS  PubMed  Google Scholar 

  12. DeSalle, R., Freedman, T., Prager, E. M. & Wilson, A. C. J. molec. Evol. 26, 157–164 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Kessing, B. D. thesis, Univ. Hawaii (1991).

  14. Li, W.-H., Tanimura, M. & Sharp, P. M. J. molec. Evol. 25, 330–342 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Britten, R. J. Science 231, 1393–1398 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Schlotterer, C., Amos, B. & Tautz, D. Nature 354, 63–65 (1991).

    Article  ADS  CAS  Google Scholar 

  17. Pratt, H. L. Jr & Casey, J. G. Natn. oceanog. atmos. Admin. Tech. Rep. NMFS 90, 97–109 (1990).

    Google Scholar 

  18. Adelman, R., Saul, R. L. & Ames, B. N. Proc. natn. Acad. Sci. U.S.A. 85, 2706–2708 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Joenje, H. Mutat. Res. 219, 193–208 (1989).

    Article  CAS  Google Scholar 

  20. Parsons, G. R. Mar. Biol. 104, 363–367 (1990).

    Article  Google Scholar 

  21. Thomas W. K. & Beckenbach, A. T. J. molec. Evol. 29, 233–245 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Avise, J. C. et al. Molec. biol. Evol. (in the press).

  23. Compagno, L. J. Sharks of the Order Carcharhiniformes (Princeton Univ. Press, Princeton, 1989).

    Google Scholar 

  24. Compagno, L. J. V. Natn. oceanogr. atmos. Admin. Tech. Rep. NMFS 90, 357–380 (1990).

    Google Scholar 

  25. Naylor, G. J. P. thesis. Univ. Maryland (1989).

  26. Espinoza-Arrubarrena, L. thesis, California State Univ. (1987).

  27. Cappetta, H. Chondrichthes II. Mesozoic and Cenozoic Elasmobranchii Vol. 3B Handbook Paleoichthyology (Fischer, Stuttgart, 1987).

    Google Scholar 

  28. Kent, B. W. Fossil Sharks of Maryland (Department of Zoology, Univ. Maryland, 1987).

    Google Scholar 

  29. Ward, D. Tert. Res. 2, 23–28 (1978).

    Google Scholar 

  30. Felsenstein, J. Phylogenetic Analysis Package (PHYLIP) (Univ. Washington, 1989).

    Google Scholar 

  31. Palumbi, S. R. et al. The Simple Fool's Guide to PCR (Department of Zoology, University of Hawaii, Honolulu, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, A., Naylor, G. & Palumbi, S. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357, 153–155 (1992). https://doi.org/10.1038/357153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/357153a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing