Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid regeneration of the actin-myosin power stroke in contracting muscle

Abstract

AT the molecular level, muscle contraction is the result of cyclic interaction between myosin crossbridges, which extend from the thick filament, and the thin filament, which consists mainly of actin. The energy for work done by a single crossbridge during a cycle of attachment, generation of force, shortening and detachment is believed to be coupled to the hydrolysis of one molecule of ATP1,2. The distance the actin filament slides relative to the myosin filament in one crossbridge cycle has been estimated as 12 nm by step-length perturbation studies on single fibres from frog muscle3,4. The 'mechanical' power stroke of the attached crossbridge can therefore be defined as 12-nm shortening with a force profile like that shown by the quick recovery of force following a length perturbation. According to this definition, power strokes cannot be repeated faster than the overall ATPase rate. Here, however, we show that the power stroke can be regenerated much faster than expected from the ATPase rate. This contradiction can be resolved if, in the shortening muscle, the free energy of ATP hydrolysis is used in several actin–myosin interactions consisting of elementary power strokes each of 5–10 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kushmerick, M. J. & Davies, R. E. Proc. R. Soc. B174, 315–353 (1969).

    ADS  Google Scholar 

  2. Lymn, R. W. & Taylor, E. W. Biochemistry 10, 4617–4624 (1971).

    Article  CAS  Google Scholar 

  3. Huxley, A. F. & Simmons, R. M. Nature 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Ford, L. E., Huxley, A. F. & Simmons, R. M. J. Physiol., Lond. 269, 441–515 (1977).

    Article  CAS  Google Scholar 

  5. Huxley, A. F., Lombardi, V. & Peachey, L. D. J. Physiol., Lond. 317, 12–13P (1981).

    Google Scholar 

  6. Cecchi, G., Colomo, F. & Lombardi, V. J. Physiol., Lond. 345, 146P (1983).

    Google Scholar 

  7. Cecchi, G., Colomo, F., Lombardi, V. & Piazzesi, G. Pflügers Arch. 409, 39–46 (1987).

    Article  CAS  Google Scholar 

  8. Ford, L. E., Huxley, A. F. & Simmons, R. M. J. Physiol., Lond. 311, 219–249 (1981).

    Article  CAS  Google Scholar 

  9. Huxley, H. E. et al. J. molec. Biol. 169, 469–506 (1983).

    Article  CAS  Google Scholar 

  10. Matsubara, I., Yagi, N. & Hashizume, H. Nature 255, 728–729 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Goldman, Y. E. & Simmons, R. M. J. Physiol., Lond. 269, 55–57P (1977).

    Google Scholar 

  12. Huxley, H. E., Faruqi, A. R., Bordas, J., Koch, M. H. J. & Hilch, J. R. Nature 284, 140–143 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Homsher, E., Irving, M. & Yamada, T. in Contractile Mechanisms in Muscle (eds Pollack, G. H. & Sugi, H.) 865–876 (Plenum, New York, 1984).

    Book  Google Scholar 

  14. Yanagida, T., Arata, T. & Oosawa, F. Nature 316, 366–369 (1985).

    Article  ADS  CAS  Google Scholar 

  15. Ishijima, A., Doi, T., Sakurada, K. & Yanagida, T. Nature 352, 301–306 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Piazzesi, G., Francini, F., Linari, M. & Lombardi, V. J. Physiol., Lond. 445, 659–711 (1992).

    Article  CAS  Google Scholar 

  17. Cecchi, G., Colomo, F. & Lombardi, V. Boll. Soc. ital. Biol. sper. 52, 733–736 (1976).

    CAS  PubMed  Google Scholar 

  18. Lombardi, V. & Piazzesi, G. J. Physiol., Lond. 431, 141–171 (1990).

    Article  CAS  Google Scholar 

  19. Huxley, A. F. & Lombardi, V. J. Physiol., Lond. 305, 15–16P (1980).

    Google Scholar 

  20. Woledge, R. C., Curtin, N. A. & Homsher, E. Energetic Aspects of Muscle Contraction (Academic, London. 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lombardi, V., Piazzesi, G. & Linari, M. Rapid regeneration of the actin-myosin power stroke in contracting muscle. Nature 355, 638–641 (1992). https://doi.org/10.1038/355638a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355638a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing