Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence from mosaic analysis of the masculinizing gene her–1for cell interactions inC. eleganssex determination

Abstract

SEX in Caenorhabditis elegans is determined by a regulatory cascade of seven interacting autosomal genes controlled by three X-linked genes in response to the X chromosome-to-autosome (X/A) ratio1,2. XX animals (high X/A) develop as self-fertile hermaphrodites, and XO animals (low X/A) develop as males. The activity of the first gene in the sex-determining cascade, her-1, is required for male sexual development3. XO her-l loss-of-function mutants develop as self-fertile hermaphrodites, whereas XX her-l gain-of-function mutants develop as masculinized intersexes4. By genetic mosaic analysis using a fused free duplication linkingher-l to a cell-autonomous marker gene, we show here thather-lexpression in a sexually dimorphic cell is neither necessary nor sufficient for that cell to adopt a male fate. Our results suggest thather-l is expressed in many, possibly all, cells and that its gene product can function non-autonomously through cell interactions to determine male sexual development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hodgkin, J. in The Nematode Caenorhabditis elegans (ed. Wood, W. B.) 243–280 (Cold Spring Harbor Laboratory, New York, 1988).

    Google Scholar 

  2. Meyer, B. Trends Genet. 4, 337–342 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Hodgkin, J. Genetics 96, 649–664 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Trent, C., Wood, W. B. & Horvitz, H. R. Genetics 120, 145–157 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hodgkin, J. A. Rev. Genet. 21, 133–154 (1987).

    Article  CAS  Google Scholar 

  6. Hunter, C. P. & Wood, W. Cell 63, 1193–1204 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Schedin, P., Hunter, C. P. & Wood, W. B. Development 112, 833–879 (1991).

    Google Scholar 

  8. Villeneuve, A. M. & Meyer, B. J. Genetics 124, 91–114 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sulston, J. & Horvitz, H. R. Devl Biol. 56, 110–156 (1977).

    Article  CAS  Google Scholar 

  10. Kimble, J. & Hirsh, D. Devl Biol. 70, 396–417 (1979).

    Article  CAS  Google Scholar 

  11. Sulston, J. E., Schierenberg, E., White, J. G. & Thomson, J. N. Devl Biol. 100, 64–119 (1983).

    Article  CAS  Google Scholar 

  12. Hodgkin, J. J. Embryol. exp. Morph. 83, 103–117 (supplement) (1984).

    PubMed  Google Scholar 

  13. Schauer, I. & Wood, W. B. Development 110, 1303–1317 (1990).

    CAS  PubMed  Google Scholar 

  14. Schedin, P. thesis, Univ. Colorado (1988).

  15. Hodgkin, J. Nature 344, 721–728 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. McLaren, A. Trends Genet. 4, 153–157 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Patek, C. E. et al. Development 115, 311–325 (1991).

    Google Scholar 

  18. Rosenbluth, R., Cuddeford, C. & Baillie, D. L. Genetics 109, 493–511 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. O'Brien, S. J. (ed) Genetic Maps 5, 3.111–3.133 (Cold Spring Harbor Lab., New York (1990)).

  20. Herman, R. K., Albertson, D. G. & Brenner, S. Genetics 83, 91–105 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Trent, C. et al. Mech. Dev. 34, 43–56 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Kenyon, C. Cell 46, 477–487 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Yuan, J.-Y. & Horvitz, H. R. Devl Biol. 138, 33–41 (1990).

    Article  CAS  Google Scholar 

  24. Hunter, C. P. thesis, Univ. Colorado (1990).

  25. Doniach, T. Genetics 114, 53–76 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Okkema, P. G. & Kimble, J. EMBO J. 10, 171–176 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Auberger, P. et al. Cell 58, 631–640 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Hannum, C. et al. Nature 343, 336–340 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Cigarroa, F. G. et al. Growth Factors 1, 179–191 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Ingham, P. W., Taylor, A. M. & Nakano, Y. Nature 353, 184–187 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Mohler, J. Genetics 120, 1061–1072 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Philips, R. G., Roberts, I. S. H., Ingham, P. W. & Whittle, J. R. S. Development 110, 105–114 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, C., Wood, W. Evidence from mosaic analysis of the masculinizing gene her–1for cell interactions inC. eleganssex determination. Nature 355, 551–555 (1992). https://doi.org/10.1038/355551a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355551a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing