Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Atomic replacement and vacancy formation and annihilation on iridium surfaces

Abstract

THE formation of nanometre-scale surface structures for quantum electronic devices, and the possibility of using the scanning tunnelling microscope and related instruments for atomic-scale surface modification1–6, make necessary a detailed understanding of surface atomic processes. It has been observed previously7– 11 that surface diffusion of an atom can take place by a series of exchanges with atoms in the surface layer. Here we use the field ion microscope to observe surface atomic processes when the chemical nature of the adatom differs from that of the surface atoms. On the iridium {001} surface, an adsorbed rhenium atom will displace an iridium atom from the substrate to form a Re–Ir–vacancy bound complex at about 230 K. On heating the sample to about 300 K, we find that this complex dissociates and the rhenium atom becomes incorporated into the surface—a kind of atomic-scale surface alloying. Alternatively, the Re–Ir cluster can be removed by field evaporation to leave a lattice vacancy, into which another adatom can subsequently diffuse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Becker, R. S., Golovchenko, J. A. & Swartzentruber, B. S. Nature 325, 419–421 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Eigler, D. M. & Sweizer, E. K. Nature 344, 524–527 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Whitman, L. J., Stroscio, J. A., Dragoset, R. A. & Celotta, R. J. Science 251, 1206–1210 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Foster, J. S., Frommer, J. E. & Arnett, P. C. Nature 331, 324–326 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Mamin, H. J., Guethner, P. H. & Rugar, D. Phys. Rev. Lett. 65, 2418–2421 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Lyo, I. W. & Avouris, P. Science 245, 1369–1372 (1989).

    Article  ADS  CAS  Google Scholar 

  7. Bassett, D. W. & Weber, P. R. Surface Sci. 70, 520–528 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Wrigley, J. D. & Ehrlich, G. Phys. Rev. Lett. 44, 661–664 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Kellogg, G. L. & Feibelman, P. J. Phys. Rev. Lett. 64, 3143–3146 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Chen, C. L. & Tsong, T. T. Phys. Rev. Lett. 64, 3147–3150 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Kellogg, G. L. Phys. Rev. Lett. 67, 216–219 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Ehrlich, G. & Stolt, K. Ann. Rev. Phys. Chem. 31, 603–640 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Tsong, T. T. Rep. Prog. Phys. 51, 759–832 (1989).

    Article  ADS  Google Scholar 

  14. Tsong, T. T. Atom-Probe Field Ion Microscopy (Cambridge University Press, 1990).

    Book  Google Scholar 

  15. Tsong, T. T. & Chen, C. L. Phys. Rev. B43, 2007–2017 (1991).

    Article  ADS  Google Scholar 

  16. Feibelman, P. J. Phys. Rev. Lett. 65, 729–732 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Chen, C. L. & Tsong, T. T. Phys. Rev. Lett. 66, 1610–1613 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Hansen, L., Stolze, P., Jacobsen, K. W. & Nørskov, J. K. Phys. Rev. B44, 6523–6525 (1991).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsong, T., Chen, CL. Atomic replacement and vacancy formation and annihilation on iridium surfaces. Nature 355, 328–331 (1992). https://doi.org/10.1038/355328a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355328a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing