Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High internal pressures in diamond fluid inclusions determined by infrared absorption

Abstract

FLUID inclusions in mantle-derived minerals provide a rare opportunity to study deep-seated mantle fluids. Among mantle minerals, only diamond possesses sufficient strength to encapsulate and transport to the surface fluids that were trapped at depths below 100 km (ref. 1). Previous studies of the bulk composition2 and internal morphology3 of micro-inclusions in cubic and coated diamonds suggested that they contain fluids, but their depth of origin could not be determined. Here I report infrared spectro-scopic evidence for residual internal pressures of 1.5–2.1 GPa within these micro-inclusions, higher than any reported previously for fluid inclusions. Extrapolation to mantle temperatures indicates fluid pressures of 4–7 GPa, comparable to those estimated on the basis of mineral equilibria between crystalline inclusions in diamond4. These pressures fall within the diamond stability field in the upper mantle, suggesting that the deep-seated fluids, rich in H2O, CO2, SiO2 and K2O, are probably the mother solutions from which cubic, and possibly eclogitic diamonds grow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Roedder, E. Fluid Inclusions, Reviews in Mineralogy Vol. 12 (Mineralogical Society of America, Washington, 1984).

    Book  Google Scholar 

  2. Navon, O., Hutcheon, I. D., Rossman, G. R. & Wasserburg, G. J. Nature 335, 784–789 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Guthrie, G. D., Veblen, D. R., Navon, O. & Rossman, G. R. Earth planet. Sci. Lett. (in the press).

  4. Meyer, H. O. A. in Mantle Xenoliths (ed. Nixon, P. H.) 501–522 (Wiley, London, 1987).

    Google Scholar 

  5. Liu, L., Mernagh, T. P. & Jaques, A. L. Contrib. Mineral. Petrol. 105, 156–161 (1990).

    Article  ADS  CAS  Google Scholar 

  6. Velde, B. & Couty, R. J. non-cryst. Solids 94, 238–250 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Wong, P. T. T., Moffatt, D. J. & Baudais, F. L. Appl. Spectrosc. 39, 733–735 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Bohlen, S. R. & Boettcher, A. L. J. geophys. Res. 87, 7073–7078 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Liu, L. Earth planet. Sci. Lett. 61, 359–364 (1982).

    Article  ADS  Google Scholar 

  10. Wong, P. T. T. & Moffatt, D. J. Appl. Spectrosc. 41, 1070–1072 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Hanson, R. C. & Jones, L. H. J. chem. Phys. 75, 1102–1112 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Taylor, W. R. in Stable Isotopes and Fluid Processes in Mineralization (eds Herbert, H. K. & Ho, S. E.) 333–349 (University of Western Australia, 1989).

    Google Scholar 

  13. Field, J. E. (ed) The Properties of Diamond (Academic, London, 1984).

  14. Liu, L. Earth. planet. Sci. Lett. 71, 104–110 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Liu, L. Nature 303, 508–509 (1983).

    Article  ADS  CAS  Google Scholar 

  16. Holloway, J. R. in Thermodynamics in Geology (ed. Fraser, D. J.) 161–181 (Reidel, Boston, 1977).

    Book  Google Scholar 

  17. Kerrick, D. M. & Jacobs, G. K. Am. J. Sci. 281, 735–767 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Bottinga, Y. & Richet, P. Am. J. Sci. 281, 620–659 (1981).

    Article  ADS  Google Scholar 

  19. Saxena, S. K. & Fei, Y. Geochim. cosmochim Acta 51, 783–791 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Belonoshko, A. & Saxena, S. K. Geochim. cosmochim. Acta 55, 381–387 (1991).

    Article  ADS  CAS  Google Scholar 

  21. Brodholt, J. & Wood, B. Geochim. cosmochim. Acta 54, 2611–2616 (1990).

    Article  ADS  CAS  Google Scholar 

  22. Novgorodov, P. G. et al. Dokl. Acad. Nauk. USSR 310(2), 439–445 (1990).

    CAS  Google Scholar 

  23. Griffin, W. L. et al. Contrib. Mineral. Petrol 99, 143–158 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Daniels, L. R. M. & Gurney, J. J. in Kimberlites and Related Rocks, Vol. 2 (ed. Ross, J.) 1012–1021 (Blackwell, Carlton, 1989).

    Google Scholar 

  25. Kennedy, C. S. & Kennedy, G. C. J. geophys. Res. 81, 2467–2470 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Pollack, H. N. & Chapman, D. S. Tectonophysics 38, 279–296 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navon, O. High internal pressures in diamond fluid inclusions determined by infrared absorption. Nature 353, 746–748 (1991). https://doi.org/10.1038/353746a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353746a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing