Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Carbon suboxide in comet Halley?

Abstract

OBSERVATIONAL data acquired during the recent appearance of comet Halley pose a puzzle about the nature and distribution of elemental carbon and carbonaceous material in its nucleus and coma. The nucleus is darker even than coal (albedo <4%)1, suggesting that its volatile ices contain a few per cent of carbonaceous material in the form of graphitic or amorphous carbon. The very high abundance of light elements in the coma dust2, 3, particularly H, C, N and O, suggests the presence of a significant organic component. The emission feature near 3.4 μm also implies the presence of organic material in the dust 4–6. But the parent species for the primary carbon-containing material that have been identified so far (such as CO, CO2 and CH4) are not present in sufficient quantities to account for all of it. Here we propose that an additional contribution from carbon suboxide (C3O2) in the coma dust and the nucleus material is consistent with the observational data. A production rate in the coma for C3O2 of about 0.03–0.04 times that of water would provide the distributed source of elemental carbon and CO within 104 km of the nucleus that is required to explain the data from the Giotto spacecraft and from ground-based observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Keller, H. U. et al. Nature 321, 320–326 (1986).

    Article  ADS  Google Scholar 

  2. Kissel, J. et al. Nature 321, 280–282 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Kissel, J. et al. Nature 321, 336–337 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Wickramasinghe, D. T. & Allen, D. A. Nature 323, 44–46 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Knacke, R. F., Brroke, T. Y. & Joyce, R. R. Astrophys. J. 310, L49–53 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Baas, F., Geballe, T. R. & Walther, D. M. Astrophys. J. 311, L97–101 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Eberhardt, P. et al. Astr. Astrophys. 187, 481–484 (1987).

    ADS  CAS  Google Scholar 

  8. Krankowsky, D. et al. Nature 321, 326–329 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Allen, M. et al. Astr. Astrophys. 187, 502–512 (1987).

    ADS  CAS  Google Scholar 

  10. Balsiger, H. et al. Nature 321, 330–334 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Woods, T. N., Feldman, P. D., Dymond, K. F. & Sahnow, D. J. Adv. Space Res. 5, 289–292 (1985); Nature 324, 436–438 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Woods, T. N., Feldman, P. D. & Dymond, K. F. Astr. Astrophys. 187, 380–384 (1987).

    ADS  CAS  Google Scholar 

  13. Festou, M. C. et al. Nature 321, 361–363 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Gringauz, K. I. et al. Nature 321, 282–285 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Cravens, T. E. et al. J. geophys. Res. 92, 7341–7353 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Reme, H. et al. Nature 321, 349–352 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Orient, O. J. & Srivastava, S. K. J. Phys. B. 20, 3923–3936 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Snyder, L. E., Palmer, P. & de Pater, I. Astr. J. 97, 246–253 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Mitchell, D. L. et al. Science 237, 626–628 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Huebner, W. F. Science 237, 628–630 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Huebner, W. F., Boice, D. C. & Sharp, C. M. Astrophys. J. 320, L149–152 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Huebner, W. F. & Boice, D. C. Am. geophys. Un. Monograph Ser. 54, 453–456 (1989).

    Google Scholar 

  23. Boice, D. C., Huebner, W. F., Sablik, M. J. & Konno, I. Geophys. Res. Lett. 17, 1813–1816 (1990).

    Article  ADS  Google Scholar 

  24. Huntress, W. T. & Delitsky, M. L. Bull. Am. Astr. Soc. 20, 828 (1988).

    Google Scholar 

  25. Weast, R. (ed.) Handbook of Chemistry and Physics, 49th edn (CRC, Cleveland, 1968).

  26. Bayes, K. D. J. Am. chem. Soc. 84, 4077–4080 (1962).

    Article  CAS  Google Scholar 

  27. Chase, M. W. et al. J. Phys. Chem. Ref. Data 14 (Suppl. 1), 1–1856 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Stief, L. J. & de Carlo, V. J. J. chem. Phys. 43, 2552 (1965).

    Article  ADS  CAS  Google Scholar 

  29. Braun, W., Bass, A. M., Davis, D. D. & Simmons, J. D. Proc. R. Soc. A312, 417–434 (1969).

    Article  ADS  CAS  Google Scholar 

  30. Tschuikow-Roux, E., Inel, Y., Kodama, S. & Kirk, A. W. J. chem. Phys. 56, 3238–3246 (1972).

    Article  ADS  CAS  Google Scholar 

  31. Kim, H. H. & Roebber, J. L. J. chem. Phys. 46, 4594–4600 (1967).

    Article  Google Scholar 

  32. Lammerzahl, P. et al. Astr. Astrophys. 187, 169–173 (1987).

    ADS  Google Scholar 

  33. Irvine, W. M. & Knacke, R. F. in Origin and Evolution of Planetary and Satellite Atmospheres (eds Atreya, S. K., Pollack, J. B. & Matthews, M. S. ) 3–34 (University of Arizona Press. Tucson, 1989).

    Google Scholar 

  34. Lunine, J. I. in The Formation and Evolution of Planetary Systems (eds Weaver, H. A. & Danly, L.) 213–242 (Cambridge University Press, New York, 1989).

    Google Scholar 

  35. Groth, W., Pessara, W. & Rommel, H. J. Z. phys. Chem. 32, 192–211 (1962).

    Article  CAS  Google Scholar 

  36. Anderson, A. R., Best, J. V. F. & Willett, M. J. JCS Faraday Trans. 62, 595–609 (1966).

    Article  CAS  Google Scholar 

  37. Sugimoto, S., Nishii, M. & Sugiura, T. Radiat. Phys. Chem. 24, 567–580 (1984); 26, 715–721 (1975); 27, 147–151 (1986).

    ADS  CAS  Google Scholar 

  38. Briggs, J. P. & Clay, P. G. Nature 218, 355 (1968).

    Article  ADS  CAS  Google Scholar 

  39. Moesta, H., Breuer, H. D. & Trappen, N. Bunsenges phys. Chem. 73, 879–883 (1969).

    CAS  Google Scholar 

  40. Haring, R. A., Pedrys, R., Oostra, D. J., Haring, A. & de Vries, A. E. Nucl. Instrum. Meth. Phys. Res. B5, 476–482 (1984).

    Article  ADS  Google Scholar 

  41. Anicich, V. G., Arakelian, T. & Hanner, M. S. Bull. Am. Astr. Soc. 21, 938 (1989).

    ADS  Google Scholar 

  42. Reed, P. D. & Lambert, R. M. Surf. Sci. 57, 485–498 (1976).

    Article  ADS  CAS  Google Scholar 

  43. Krasnopolsky, V. A. et al. Nature 321, 269–271 (1986).

    Article  ADS  Google Scholar 

  44. Cornu, A. & Massot, R. Compilation of Mass Spectral Data, 2nd Edn (Heyden, London, 1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huntress, W., Alien, M. & Delrtsky, M. Carbon suboxide in comet Halley?. Nature 352, 316–318 (1991). https://doi.org/10.1038/352316a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352316a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing