Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey

Abstract

The large-scale structure in the distribution of galaxies is thought to arise from the gravitational instability of small fluctuations in the initial density field of the Universe. A key test of this hypothesis is that forming superclusters of galaxies should generate a systematic infall of other galaxies. This would be evident in the pattern of recessional velocities, causing an anisotropy in the inferred spatial clustering of galaxies. Here we report a precise measurement of this clustering, using the redshifts of more than 141,000 galaxies from the two-degree-field (2dF) galaxy redshift survey. We determine the parameter β = Ω0.6/b = 0.43 ± 0.07, where Ω is the total mass-density parameter of the Universe and b is a measure of the ‘bias’ of the luminous galaxies in the survey. (Bias is the difference between the clustering of visible galaxies and of the total mass, most of which is dark.) Combined with the anisotropy of the cosmic microwave background, our results favour a low-density Universe with Ω ≈ 0.3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The distribution of galaxies in part of the two-degree-field galaxy redshift survey (2dFGRS), drawn from a total of 141,402 galaxies.
Figure 2: The redshift-space correlation function for the 2dFGRS, ξ(σ,π), plotted as a function of transverse (σ) and radial (π) pair separation.
Figure 3: The flattening of the redshift-space correlation function is quantified by the quadrupole-to-monopole ratio, ξ20.
Figure 4: Likelihood contours for β and the fingers-of-God smearing parameter σp, based on the data in Fig. 3 (considering 8 h-1 Mpc < r < 25 h-1 Mpc).
Figure 5: The dimensionless matter power spectrum at zero redshift, Δ2(k), as predicted from the allowed range of models that fit the microwave-background anisotropy data, plus the assumption that H0 = 70 km s-1 Mpc-1 ± 10%.

Similar content being viewed by others

References

  1. Hubble, E. P. The distribution of extra-galactic nebulae. Astrophys. J. 79, 8–76 (1934).

    Article  ADS  Google Scholar 

  2. Kirshner, R. P., Oemler, A., Schechter, P. L. & Shectman, S. A. A million cubic megaparsec void in Bootes. Astrophys. J. 248, L57–L60 (1981).

    Article  ADS  Google Scholar 

  3. Davis, M. & Peebles, P. J. E. A survey of galaxy redshifts. V–The two-point position and velocity correlations. Astrophys. J. 267, 465–482 (1983).

    Article  ADS  Google Scholar 

  4. Bean, A. J., Ellis, R. S., Shanks, T., Efstathiou, G. & Peterson, B. A. A complete galaxy redshift sample. I–The peculiar velocities between galaxy pairs and the mean mass density of the Universe. Mon. Not. R. Astron. Soc. 205, 605–624 (1983).

    Article  ADS  CAS  Google Scholar 

  5. de Lapparent, V., Geller, M. J. & Huchra, J. P. A slice of the universe. Astrophys. J. 302, L1–L5 (1986).

    Article  ADS  Google Scholar 

  6. Kaiser, N. A sparse-sampling strategy for the estimation of large-scale clustering from redshift surveys. Mon. Not. R Astron. Soc. 219, 785–790 (1986).

    Article  ADS  Google Scholar 

  7. Saunders, W. et al. The density field of the local universe. Nature 349, 32–38 (1991).

    Article  ADS  Google Scholar 

  8. Shectman, S. A. et al. The Las Campanas redshift survey. Astrophys. J. 470, 172–188 (1996).

    Article  ADS  Google Scholar 

  9. Taylor, K., Cannon, R. D. & Watson, F. G. Anglo-Australian Telescope's 2dF facility. Proc. SPIE 2871, 145–149 (1999).

    Article  ADS  Google Scholar 

  10. Colless, M. First results from the 2dF galaxy redshift survey. Phil. Trans. R. Soc. Lond. A 357, 105–116 (1999).

    Article  ADS  Google Scholar 

  11. Maddox, S., Efstathiou, G. & Sutherland, W. J. The APM Galaxy Survey–III. An analysis of systematic errors in the angular correlation function and cosmological implications. Mon. Not. R. Astron. Soc. 283, 1227–1263 (1996).

    Article  ADS  Google Scholar 

  12. Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227, 1–21 (1987).

    Article  ADS  Google Scholar 

  13. Hamilton, A. J. S., Tegmark, M. & Padmanabhan, N. Mon. Not. R. Astron. Soc. 317, L23–L27 (2000).

    Article  ADS  Google Scholar 

  14. Pen, U.-L. Reconstructing nonlinear stochastic bias from velocity space distortions. Astrophys. J. 504, 601–606 (1998).

    Article  ADS  Google Scholar 

  15. Dekel, A. & Lahav, O. Stochastic nonlinear galaxy biasing. Astrophys. J. 520, 24–34 (1999).

    Article  ADS  Google Scholar 

  16. Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M. & Lacey, C. G. The nature of galaxy bias and clustering. Mon. Not. R. Astron. Soc. 311, 793–808 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Kauffmann, G., Nusser, A. & Steinmetz, M. Galaxy formation and large-scale bias. Mon. Not. R. Astron. Soc. 286, 795–811 (1997).

    Article  ADS  Google Scholar 

  18. Strauss, M. A. & Willick, J. A. The density and peculiar velocity fields of nearby galaxies. Phys. Rep. 261, 271–431 (1995).

    Article  ADS  Google Scholar 

  19. Hamilton, A. J. S. in The Evolving Universe Vol. 185, 231 (Kluwer Astrophysics and Space Science Library, Kluwer, Dordrecht, 1998); also preprint astro-ph/9708102 at 〈xxx.lanl.gov〉 (1997).

    Book  Google Scholar 

  20. Taylor, A. N., Ballinger, W. E., Heavens, A. F. & Tadros, H. Application of data compression methods to the redshift-space distortions of the PSCz galaxy catalogue. Mon. Not. R. Astron. Soc. (in the press); also preprint astro-ph/0007048 at 〈xxx.lanl.gov〉 (2000).

  21. Outram, P. J., Hoyle, F. & Shanks, T. The Durham/UKST galaxy redshift survey–VII. Redshift-space distortions in the power spectrum. Mon. Not. R. Astron. Soc. (in the press); also preprint astro-ph/0009387 at 〈xxx.lanl.gov〉 (2000).

  22. Hamilton, A. J. S. Toward better ways to measure the galaxy correlation function. Astrophys. J. 417, 19–35 (1993).

    Article  ADS  Google Scholar 

  23. Landy, S. D. & Szalay, A. S. Bias and variance of angular correlation functions. Astrophys. J. 412, 64–71 (1993).

    Article  ADS  Google Scholar 

  24. Cole, S., Hatton, S., Weinberg, D. H. & Frenk, C. S. Mock 2dF and SDSS galaxy redshift surveys. Mon. Not. R. Astron. Soc. 300, 945–966 (1998).

    Article  ADS  Google Scholar 

  25. Feldman, H. A., Kaiser, N. & Peacock, J. A. Power-spectrum analysis of three-dimensional redshift surveys. Astrophys. J. 426, 23–37 (1994).

    Article  ADS  Google Scholar 

  26. Meiksin, A. A. & White, M. The growth of correlations in the matter power spectrum. Mon. Not. R. Astron. Soc. 308, 1179–1184 (1999).

    Article  ADS  Google Scholar 

  27. Scoccimarro, R., Zaldarriaga, M. & Hui, L. Power spectrum correlations induced by nonlinear clustering. Astrophys. J. 527, 1–15 (1999).

    Article  ADS  Google Scholar 

  28. Szalay, A. S., Matsubara, T. & Landy, S. D. Redshift-space distortions of the correlation function in wide-angle galaxy surveys. Astrophys. J. 498, L1–L4 (1998).

    Article  ADS  Google Scholar 

  29. Folkes, S. J. et al. The 2dF galaxy redshift survey: spectral types and luminosity functions. Mon. Not. R. Astron. Soc. 308, 459–472 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Benoist, C., Maurogordato, S., da Costa, L. N., Cappi, A. & Schaeffer, R. Biasing in the galaxy distribution. Astrophys. J. 472, 452–459 (1996).

    Article  ADS  Google Scholar 

  31. Loveday, J., Maddox, S. J., Efstathiou, G. & Peterson, B. A. The Stromlo-APM redshift survey. 2: Variation of galaxy clustering with morphology and luminosity. Astrophys. J. 442, 457–468 (1995).

    Article  ADS  Google Scholar 

  32. Carlberg, R. G. et al. Galaxy clustering evolution in the CNOC2 high-luminosity sample. Astrophys. J. 542, 57–67 (2000).

    Article  ADS  CAS  Google Scholar 

  33. Verde, L., Heavens, A. F., Matarrese, S. & Moscardini, L. Large-scale bias in the Universe–II. Redshift-space bispectrum. Mon. Not. R. Astron. Soc. 300, 747–756 (1998).

    Article  ADS  Google Scholar 

  34. Jaffe, A. et al. Cosmology from Maxima-1, Boomerang and COBE/DMR CMB Observations; preprint astro-ph/0007333 at 〈xxx.lanl.gov〉 (2000).

  35. Mould, J. R. et al. The Hubble Space Telescope key project on the extragalactic distance scale. XXVIII. Combining the constraints on the Hubble constant. Astrophys. J. 529, 786–794 (2000).

    Article  ADS  Google Scholar 

  36. Freedman, W. L. et al. Final results from the Hubble Space Telescope key project to measure the Hubble constant; preprint astro-ph/0012376 at 〈xxx.lanl.gov〉 (2000).

  37. Ballinger, W. E., Peacock, J. A. & Heavens, A. F. Measuring the cosmological constant with redshift surveys. Mon. Not. R. Astron. Soc. 282, 877–888 (1996).

    Article  ADS  CAS  Google Scholar 

  38. Hatton, S. & Cole, S. Modelling the redshift-space distortion of galaxy clustering. Mon. Not. R. Astron. Soc. 296, 10–20 (1998).

    Article  ADS  Google Scholar 

  39. Baugh, C. M. & Efstathiou, G. The three-dimensional power spectrum measured from the APM galaxy survey–2. Use of the two-dimensional power spectrum. Mon. Not. R. Astron. Soc. 267, 323–332 (1994).

    Article  ADS  Google Scholar 

  40. Hamilton, A. J. S. Measuring omega and the real correlation function from the redshift correlation function. Astrophys. J. 385, L5–L8 (1992).

    Article  ADS  Google Scholar 

  41. Jing, Y. P., Mo, H. J. & Börner, G. Spatial correlation function and pairwise velocity dispersion of galaxies: Cold dark matter models versus the Las Campanas survey. Astrophys. J. 494, 1–12 (1998).

    Article  ADS  Google Scholar 

  42. Jenkins, A. R. et al. Evolution of structure in cold dark matter universes. Astrophys. J. 499, 20–40 (1998).

    Article  ADS  Google Scholar 

  43. Peacock, J. A. & Dodds, S. J. Non-linear evolution of cosmological power spectra. Mon. Not. R. Astron. Soc. 280, L19–L26 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The 2dF Galaxy Redshift Survey was made possible through the dedicated efforts of the staff of the Anglo-Australian Observatory, both in creating the two-degree-field instrument and in supporting it on the telescope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Peacock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peacock, J., Cole, S., Norberg, P. et al. A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey. Nature 410, 169–173 (2001). https://doi.org/10.1038/35065528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35065528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing