Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Specificities of heparan sulphate proteoglycans in developmental processes

Abstract

Heparan sulphate proteoglycans are abundant cell-surface molecules that consist of a protein core to which heparan sulphate glycosaminoglycan chains are attached. The functions of these molecules have remained mostly underappreciated by developmental biologists; however, the actions of important signalling molecules, for example Wnt and Hedgehog, depend on them. To understand both the mechanisms by which ligands involved in development interact with their receptors and how morphogens pattern tissues, biologists need to consider the functions of heparan sulphate proteoglycans in signalling and developmental patterning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of HS chain biosynthesis.
Figure 2: Depiction of HSPGs associated with cell surfaces.

Similar content being viewed by others

References

  1. Bernfield,M. et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–393 (1992).

    Article  CAS  Google Scholar 

  2. Bernfield,M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    Article  CAS  Google Scholar 

  3. Habuchi,H., Habuchi,O. & Kimata,K. Biosynthesis of heparan sulfate and heparin. How are the multifunctional glycosaminoglycans built up? Trends Glycosci. Glycotechnol. 10, 65–80 ( 1998).

    Article  CAS  Google Scholar 

  4. Rosenberg,R. D., Shworak,N. W., Liu,J., Schwartz,J. J. & Zhang, L. Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J. Clin. Invest. 99, 2062–2072 (1997).

    Article  CAS  Google Scholar 

  5. Lindahl,U., Kusche-Gullberg,M. & Kjellén,L. Regulated diversity of heparan sulfate. J. Biol. Chem. 273, 24979– 24982 (1998).

    Article  CAS  Google Scholar 

  6. Lyon,M. & Gallagher,J. T. Bio-specific sequences and domains in heparan sulfate and the regulation of cell growth and adhesion. Matrix Biol. 17, 485–493 (1998).

    Article  CAS  Google Scholar 

  7. Lindahl,U. Heparin (CRC, Boca Raton, Florida, 1989).

    Google Scholar 

  8. Iozzo,R. V. Matrix proteoglycans: from molecular design to cellular function. Annu. Rev. Biochem. 67, 609–652 (1998).

    Article  CAS  Google Scholar 

  9. Nakato,H., Futch,T. A. & Selleck, S. B. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121, 3687– 3702 (1995).

    CAS  PubMed  Google Scholar 

  10. Veugelers,M. & David,G. The glypicans: a family of GPI-anchored heparan sulfate proteoglycans with a potential role in the control of cell division. Trends Glycosci. Glycotechnol. 10, 145–152 (1998).

    Article  CAS  Google Scholar 

  11. Fitzgerald,M. L. et al. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3 sensitive metalloproteinase. J. Cell. Biol. 148, 811– 824 (2000).

    Article  CAS  Google Scholar 

  12. Subramanian,S. V., Fitzgerald,M. L. & Bernfield, M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor activation. J. Biol. Chem. 272, 14713–14720 (1997).

    Article  CAS  Google Scholar 

  13. Kato,M. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nature Med. 4, 691–697 (1998).

    Article  CAS  Google Scholar 

  14. Kainulainen,V., Wang,H., Schick,C. & Bernfield,M. Syndecans, heparan sulfate proteoglycans, maintain the proteolytic balance of acute wound fluids. J. Biol. Chem. 273, 11563– 11569 (1998).

    Article  CAS  Google Scholar 

  15. Binari,R. C. et al. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124, 2623–2632 (1997).

    CAS  Google Scholar 

  16. Haecker,U., Lin,X. & Perrimon,N. The Drosophila sugarless gene modulates Wingless signaling and encodes an enzyme involved in polysaccharide. Development 124 , 3565–3573 (1997).

    Google Scholar 

  17. Haerry,T. E., Heslip,T. R., Marsh,J. L. & O'Conner,M. B. Defects in glucuronate biosynthesis disrupt Wingless signaling in Drosophila. Development 124, 3055– 3064. (1997).

    CAS  Google Scholar 

  18. Lin,X. & Perrimon,N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400, 281–284 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Bellaiche,Y., The,I. & Perrimon,N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998).

    Article  ADS  CAS  Google Scholar 

  20. The,I., Bellaiche,Y. & Perrimon, N. Evidence that heparan sulfate proteoglycans are involved in the movement of Hedgehog molecules through fields of cells. Mol. Cell 4, 633–639 ( 1999).

    Article  CAS  Google Scholar 

  21. Stickens,D. et al. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nature Genet. 14, 25–32 (1996).

    Article  CAS  Google Scholar 

  22. McCormick,C. et al. The putative tumour suppressor EXT1 alters the expression of cell-surface heparan sulfate. Nature Genet. 19, 158–161 (1998).

    Article  CAS  Google Scholar 

  23. Lind,T., Tufaro,F., McCormick,C., Lindahl,U. & Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273, 26265–26268 ( 1998).

    Article  CAS  Google Scholar 

  24. Toyoda,H., Kinoshita-Toyoda,A. & Selleck, S. B. Structural analysis of glycosaminoglycans in Drosophila and C.elegans and demonstration that tout velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J. Biol. Chem. 275, 2269–2275 (2000).

    Article  CAS  Google Scholar 

  25. Sen,J., Goltz,J. S., Stevens,L. & Stein,D. Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95, 471– 481 (1998).

    Article  CAS  Google Scholar 

  26. Bullock,S. L., Fletcher,J. M., Beddington, R. S. P. & Wilson,V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1906 (1998).

    Article  CAS  Google Scholar 

  27. Forsberg,E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773– 776 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Humphries,D. E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769– 772 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Kato,M., Wang,H., Bernfield,M., Gallagher,J. T. & Turnbull, J. E. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J. Biol. Chem. 269, 18881–18890 (1994).

    CAS  PubMed  Google Scholar 

  30. Sanderson,R. D., Turnbull,J. E., Gallagher, J. T. & Lander,A. D. Fine structure of heparan sulfate regulates syndecan-1 function and cell behavior. J. Biol. Chem. 269, 13100– 13106 (1994).

    CAS  PubMed  Google Scholar 

  31. Nurcombe,V., Ford,M. D., Wildschut,J. A. & Bartlett,P. F. Developmental regulation of neural response to FGF-1 and FGF-2 by heparan sulfate proteoglycan. Science 260, 103– 106 (1993).

    Article  ADS  CAS  Google Scholar 

  32. Tsuda,M. et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276– 280 (1999).

    Article  ADS  CAS  Google Scholar 

  33. Cadigan,K. M., Fish,M. P., Rulifson,E. J. & Nusse,R. Wingless repression of Drosophila frizzled 2 expression shapes the Wingless morphogen gradient in the wing. Cell 93, 767–777 (1998).

    Article  CAS  Google Scholar 

  34. Jackson,S. M. et al. Dally, a Drosophila glypican, controls cellular responses to the TGF-β-related morphogen, Dpp. Development 124, 4113–4120 (1997).

    CAS  PubMed  Google Scholar 

  35. Gonzalez,A. D. et al. OCI-5/GPC3, a glypican encoded by a gene that is mutated in the Simpson- Golabi-Behmel overgrowth syndrome, induces apoptosis in a cell line- specific manner. J. Cell Biol. 141, 1407–1414 (1998).

    Article  CAS  Google Scholar 

  36. Pilia,G. et al. Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome. Nature Genet. 12, 241 –247 (1996).

    Article  CAS  Google Scholar 

  37. Alexander,C. M. et al. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nature Genet. (in the press).

  38. Kitagawa,H., Shimakawa,H. & Sugahara, K. The tumor suppressor EXT-like gene EXTL-2 encodes an alpha1,4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein liknkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274, 13933–13937 (1999).

    Article  CAS  Google Scholar 

  39. Rubin,G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 ( 2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (MB). N.P. is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrimon, N., Bernfield, M. Specificities of heparan sulphate proteoglycans in developmental processes . Nature 404, 725–728 (2000). https://doi.org/10.1038/35008000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35008000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing