Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The role of hydrogen in the electrical conductivity of the upper mantle

Abstract

INTERPRETATIONS of the observed electrical conductivity of the upper mantle have relied on laboratory studies of dry olivine and basaltic melts1,2. These studies indicate that the conductivity of the asthenosphere is higher than that of olivine, suggesting that partial melting or other high-conductivity mechanisms such as grain-boundary phases are required2,3. Recent experimental studies4–6, however, have demonstrated that various kinetic processes in silicate minerals are greatly enhanced by the dissolution of hydrogen. As hydrogen is probably present in the upper mantle, studies on dry olivine may not therefore be relevant to the real Earth. Here I use experimental data on the solubility and diff usivity of hydrogen in olivine5,7 to estimate its effect on the electrical conductivity. I conclude that the observed high conductivity in the asthenosphere can be attributed to solid-state conductivity in olivine if a small amount of hydrogen is present. Partial melting of the asthenosphere on a global scale is therefore not required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Duba, A. Acta geod. geophys. Montanist. 11, 485–495 (1977).

    Google Scholar 

  2. Shankland, T. J. & Waff, H. G. J. geophys. Res. 82, 5409–5417 (1977).

    Article  ADS  Google Scholar 

  3. Shankland, T. J., O'Connell, R. J. & Waff, H. G., Rev. Geophys. Space Phys. 19, 394–406 (1981).

    Article  ADS  Google Scholar 

  4. Gilleti, B. J. & Yund, R. A. J. geophys. Res. 89, 4039–4046 (1984).

    Article  ADS  Google Scholar 

  5. Mackwell, S. J., Kohlstedt, D. L. & Paterson, M. S. J. geophys. Res. 90, 11319–11333 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Karato, S., Paterson, M. S. & Fitz Gerald, J. D. J. geophys. Res. 91, 8151–8176 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Mackwell, S. J. & Kohlstedt, D. L. J. geophys. Res. 95, 5079–5088 (1990).

    Article  ADS  Google Scholar 

  8. Schock, R. N., Duba, A. G. & Shankland, T. J. J. geophys. Res. 94, 5829–5839 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Filloux, J. H. Earth planet. Sci. Lett. 46, 244–252 (1980).

    Article  ADS  Google Scholar 

  10. Oldenburg, D. W. Geophys. J. R. astr. Soc. 65, 359–394 (1981).

    Article  ADS  Google Scholar 

  11. Beran, A. & Putnis, A. Phys. chem. Miner. 9, 57–60 (1983).

    Article  ADS  CAS  Google Scholar 

  12. Freund, F. & Oberhauser, G. J. geophys. Res. 91, 745–761 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Ito, E., Harris, D. M. & Anderson, A. T. Jr Geochim. cosmochim. Acta 47, 1613–1624 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Duba, A. & Heard, H. C. Eos 61, 404 (1980).

    Google Scholar 

  15. Mott, N. F. & Gurney, R. W. Electronic Processes in Ionic Crystals Ch. 2 (Oxford University Press, 1948).

    MATH  Google Scholar 

  16. Karato, S. thesis, Univ. Tokyo (1974).

  17. Misener, D. J. in Geochemical Transport and Kinetics (eds Hoffmann, A. W., Gilleti, B. J., Yoder, H. S. & Yund, R. A.) 117–129 (Carnegie Instn, Washington, DC, 1974).

    Google Scholar 

  18. Mercier, J. C. & Carter, N. L. J. geophys. Res. 80, 3349–3362 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Hobbs, B. E. J. geophys. Res. 89, 4026–4038 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Bai, Q., Kohlstedt, D. L. & Mackwell, S. J. Eos 71, 625 (1990).

    Google Scholar 

  21. Ringwood, A. E. Composition and Petrology of the Earth's Mantle 619 (McGraw-Hill, New York, 1975).

    Google Scholar 

  22. Takahashi, E. & Kushiro, I. Am. Miner. 68, 859–889 (1983).

    CAS  Google Scholar 

  23. Karato, S. & Spetzler, H. A. Rev. Geophys. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karato, S. The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347, 272–273 (1990). https://doi.org/10.1038/347272a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347272a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing