Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large bubble-like features ordered on a macrolattice in helium-implanted gold

Abstract

IMPLANTATION of metals at temperatures near ambient with helium ions can result in the formation of an ordered array—a superlattice—of small (2 nm in diameter) helium bubbles1–11. The superlattice has the same symmetry as the atomic lattice of the metal but with a lattice spacing about 20 times greater. We now report the observation, in helium-implanted gold, of an ordered array—a 'macrolattice'—of artefacts 60 nm in diameter, which we believe also to be helium bubbles. Again, the macrolattice has the same symmetry as the gold lattice, but the lattice spacing is about 400 times larger. The coexistence in a single specimen of three separate lattices of very similar structure but which differ so markedly in scale provides a new perspective on ordering phenomena. In particular, an understanding of the processes that drive bubble ordering may provide more general insight into the development of microstructures in metals during ion irradiation12. Such information is of value for the production of wear- and corrosion-resistant surfaces by ion implantation13,14 and the development of materials with appropriate erosion and gas-loading properties for use in future nuclear-fusion reactors15,16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sass, S. L. & Eyre, B. L. Phil. Mag. 27, 1447–1453 (1973).

    Article  ADS  CAS  Google Scholar 

  2. Mazey, D. J., Eyre, B. L., Evans, J. H., Erents, S. K. & McCracken, G. M. J. nucl. Mater. 64, 145–156 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Johnson, P. B. & Mazey, D. J. Nature 276, 595–596 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Johnson, P. B. & Mazey, D. J. J. nucl. Mater. 93/94, 721–727 (1980).

    Article  ADS  Google Scholar 

  5. Jäger, W. & Röth, J. J. nucl. Mater. 93/94, 756–766 (1980).

    Article  ADS  Google Scholar 

  6. Johnson, P. B., Mazey, D. J. & Evans, J. H. Radial Effects 78, 147–156 (1983).

    Article  CAS  Google Scholar 

  7. Van Swijgenhoven, H., Knuyt, G., Vanoppen, J. & Stals, L. M. J. nucl. Mater. 114, 157–167 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Johnson, P. B. & Mazey, D. J. J. nucl. Mater. 127, 30–46 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Johnson, P. B., Malcolm, A. L. & Mazey, D. J. Nature 329, 316–318 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Johnson, P. B., Malcolm, A. L. & Mazey, D. J. J. nucl. Mater. 152, 69–72 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Johnson, P. B., Diprose, A. L. & Mazey, D. J. J. nucl. Mater. 158, 108–118 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Lucas, A. A. Physica B127, 225–239 (1984).

    Article  CAS  Google Scholar 

  13. Dearnaley, G. Surf. Engng 2, 213–221 (1986).

    Article  Google Scholar 

  14. Dearnaley, G. Nucl. Instrum. Meth. B7/8, 158–165 (1985).

    Article  Google Scholar 

  15. Donnelly, S. E. Radiat. Effects 90, 1–47 (1985).

    Article  CAS  Google Scholar 

  16. Johnson, P. B. & Armstrong, T. R. Nucl. Instrum. Meth 148, 85–92 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Evans, J. H. & Mazey, D. J. J. nucl. Mater. 138, 176–184 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Johnson, P. B. & Jones, W. R. J. nucl. Mater. 120, 125–132 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Jones, W. R. & Johnson, P. B. J. nucl. Mater. 139, 27–34 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Mazey, D. J., Francis, S. & Hudson, J. A. J. nucl. Mater. 47, 137–142 (1973).

    Article  ADS  Google Scholar 

  21. Krishan, K. Radiat. Effects 66, 121–155 (1982).

    Article  CAS  Google Scholar 

  22. Malen, K. & Bullough, R. in Proc. Conf. Voids Formed by Irradiation of Reactor Materials (eds Pugh, S. F., Loretto, M. H. & Norris, D. I. R.) 109–119 (Atomic Energy Research Establishment, Harwell, 1971).

    Google Scholar 

  23. Stoneham, A. M. in Unclassified Rep. No. AERE-R7934, 319–329 (Atomic Energy Research Establishment, Harwell, 1975).

  24. Khachaturyan, A. G. & Airapetyan, V. M. Phys. Status Solidi A26, 61–70 (1974).

    Article  ADS  CAS  Google Scholar 

  25. Evans, J. H. Mater. Sci. Forum 15/18, 869–874 (1987).

    Article  Google Scholar 

  26. Woo, C. H. & Frank, W. Mater. Sci. Forum 15/18, 875–880 (1987).

    Article  Google Scholar 

  27. Johnson, P. B. in Proc. 4th Solid State Phys. Mtg/NZ Inst. Phys., Phys. Rep 1/82 (Victoria Univ. Wellington, 1982).

  28. Dubinko, V. I., Slezov, V. V., Tur, A. V. & Yanosky, V. V. Radiat. Effects 100, 85–104 (1986).

    Article  CAS  Google Scholar 

  29. Wolfer, W. G. Phil. Mag. A59, 87–103 (1989).

    Article  Google Scholar 

  30. Evans, J. H. in Encyclopedia of Materials Science and Engineering Suppl. Vol. 1 (ed. Cahn, R. W.) 547–551 (Pergamon, Oxford, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, P., Thomson, R. & Mazey, D. Large bubble-like features ordered on a macrolattice in helium-implanted gold. Nature 347, 265–267 (1990). https://doi.org/10.1038/347265a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347265a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing