Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Peripheral organs control central neurogenesis in the leech

Abstract

INTERACTIONS between developing nerve centres and peripheral targets are known to affect neuronal survival and thus regulate the adult number of neurons in many systems1,2. Here we provide evidence that peripheral tissues can also influence cell numbers by stimulating the production of neurons. In the leech Hirudo medicinalis, there is a population of several hundred neurons that is found only in the two segmental ganglia that innervate the genitalia3 and which seem to be added gradually during post-embryonic maturation4,5. By monitoring 5-bromo-2′-deoxyuridine incorporation immunohistochemically, we have now determined that these neurons are actually born late in embryogenesis, well after all other central neurons are born and after efferent and afferent projections are established between these ganglia and the periphery. Ablation of the male genitalia early in embryogenesis, or evulsion of the nerves that connect them to the ganglia, prevent the birth of these neurons. However, they fail to appear ectopically when male genitalia are transplanted to other segments, despite innervation by local ganglia. We conclude that the generation of the late-appearing neurons depends on a highly localized signal produced by the male genitalia, to which only the ganglia that normally innervate these organs have the capacity to respond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oppenheim, R. W. Trends Neurosci. 12, 252–255 (1989).

    Article  CAS  Google Scholar 

  2. Williams, R. W. & Herrup, K. A. Rev. Neurosci. 11, 423–453 (1988).

    Article  CAS  Google Scholar 

  3. Macagno, E. R. J. comp. Neurol. 190, 283–302 (1980).

    Article  CAS  Google Scholar 

  4. Stewart, R. R., Spergel, D. & Macagno, E. R. J. comp. Neurol. 253, 253–259 (1986).

    Article  CAS  Google Scholar 

  5. Baptista, C. A. & Macagno, E. R. J. Neurobiol. 19, 707–726 (1988).

    Article  CAS  Google Scholar 

  6. Kuhlman, J. R., Li, C. & Calabrese, R. L. J. Neurosci. 5, 2301–2309 (1985).

    Article  CAS  Google Scholar 

  7. Baptista, C. A. & Macagno, E. R. Neuron 1, 949–962 (1988).

    Article  CAS  Google Scholar 

  8. Gratzner, H. G. Science 218, 474–475 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Truman, J. W. & Bate, M. Devl. Biol. 125, 145–157 (1988).

    Article  CAS  Google Scholar 

  10. Miller, M. W. & Nowakowski, R. S. Brain Res. 457, 44–52 (1988).

    Article  CAS  Google Scholar 

  11. Bibb, H. D. J. exp. Zool. 200, 265–276 (1977).

    Article  CAS  Google Scholar 

  12. Kollros, J. J. J. comp. Neurol. 205, 171–178 (1982).

    Article  CAS  Google Scholar 

  13. Davis, M. R. & Constantine-Paton, M. J. comp. Neurol. 221, 444–452 (1983).

    Article  CAS  Google Scholar 

  14. Devor, M., Govrin-Lippman, R., Frank, I. & Raber, P. Somatosensory Res. 3, 139–167 (1985).

    Article  CAS  Google Scholar 

  15. Chiarodo, A. T. J. exp. Zool. 153, 263–277 (1963).

    Article  Google Scholar 

  16. Macagno, E. R. Devl Biol. 73, 206–238 (1979).

    Article  CAS  Google Scholar 

  17. Anderson, H., Edwards, J. S. & Palka, J. A. Rev. Neurosci. 3, 97–139 (1980).

    Article  CAS  Google Scholar 

  18. Rothman, T. P., Gershon, M. D., Fontaine-Perus, J. C., Chanconie, M. & Le Dourain, N. M. Devl Biol. 124, 331–346 (1987).

    Article  CAS  Google Scholar 

  19. Fontaine-Perus, J. C., Chanconie, M., Le Dourain, N. M., Gershon, M. D. & Rothman, T. P. Development 107, 413–422 (1989).

    CAS  PubMed  Google Scholar 

  20. Muller, K. J., Nicholls, J. G. & Stent, G. S. (eds) Neurobiology of the Leech (Cold Spring Harbor Laboratory, 1981).

  21. Fuchs, P. A., Nicholls, J. G. & Ready, D. F. J. Physiol. 316, 203–223 (1981).

    Article  CAS  Google Scholar 

  22. Penit, C. J. Histochem. Cytochem. 36, 473–478 (1988).

    Article  CAS  Google Scholar 

  23. Harms, G., Van Goor, H., Koudstaal, J., De Ley, L. & Hardonk, M. J. Histochemlstry 86, 393–395 (1987).

    Article  CAS  Google Scholar 

  24. Hayashi, Y., Koike, M., Matsutani, M. & Hoshino, T. J. Histochem. Cytochem. 36, 511–514 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baptista, C., Gershon, T. & Macagno, E. Peripheral organs control central neurogenesis in the leech. Nature 346, 855–858 (1990). https://doi.org/10.1038/346855a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346855a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing