Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion protein

Abstract

A UNIVERSAL feature of integral transmembrane proteins is a hydrophobic peptide segment that spans the lipid bilayer. These hydrophobic domains are important for terminating the trans-location of the polypeptide chain across the membrane of the endoplasmic reticulum (a process termed stop transfer) and for integrating the protein into the bilayer1–5. But a role for extracytoplasmic sequences in stop transfer and transmembrane integration has not previously been shown. Recently, a sequence which directs an unusual mode of stop transfer has been identified in the prion protein. This brain glycoprotein exists in two isoforms6–8, which are identical both in primary amino-acid sequence and in containing phosphatidylinositol glycolipid linkages at their C termini, which can be cleaved by a phophatidylinositol-specific phospholipase C9. But only one of the isoforms (PrPc) is released from cells on treatment with this phospholipase10, indicating that the two isoforms have either different subcellular locations or transmembrane orientations. Consistent with this is the observation of two different topological forms in cell-free systems11,12. An unusual topogenic sequence in the prion protein seems to direct these alternative topologies (manuscript in preparation). In the wheat-germ translation system, this sequence directs nascent chains to a transmembrane orientation; by contrast, in the rabbit reticulocyte lysate system, this sequence fails to cause stop transfer of most nascent chains. We have now investigated determinants in this unusual topogenic sequence that direct transmembrane topology, and have demonstrated that (1) a lumenally disposed charged domain is required for stop transfer at the adjacent hydrophobic domain, (2) a precise spatial relationship between these domains is essential for efficient stop transfer, and (3) codons encompassing this hydrophilic extracytoplasmic domain confer transmembrane topology to a heterologous protein when engineered adjacent to the codons for a normally translocated hydrophobic domain. These results identify an unexpected functional domain for stop transfer in the prion protein and have implications for the mechanism of membrane protein biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rose, J. K. & Bergmann, J. E. Cell 30, 753–762 (1982).

    Article  CAS  Google Scholar 

  2. Gething, M. J. & Sambrook, J. Nature 300, 598–603 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Cutler, D. F. et al. J. Cell Biol. 102, 902–910 (1986).

    Article  CAS  Google Scholar 

  4. Doyle, C. et al. J. Cell Biol. 103, 1193–1204 (1986).

    Article  CAS  Google Scholar 

  5. Adams, G. A. & Rose, J. K. Cell 41, 1007–1015 (1985).

    Article  CAS  Google Scholar 

  6. Oesch, B. et al. Cell 40, 735–746 (1985).

    Article  CAS  Google Scholar 

  7. Meyer, R. K. et al. Proc. natn. Acad. Sci. U.S.A. 83, 2310–2314 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Prusiner, S. B. New Engl. J. Med. 317, 1571–1581 (1987).

    Article  CAS  Google Scholar 

  9. Stahl, N. et al. Cell 51, 229–240 (1987).

    Article  CAS  Google Scholar 

  10. Stahl, N. et al. FASEB J. 2, A989, (1988).

  11. Hay, B. et al. Biochemistry 26, 8110–8115 (1987).

    Article  CAS  Google Scholar 

  12. Hay, B. et al. Molec. cell. Biol. 7, 914–920 (1987).

    Article  CAS  Google Scholar 

  13. Blobel, G. Proc. natn. Acad. Sci. U.S.A. 77, 1496–1500 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Perara, E. & Lingappa, V. R. in Protein Transfer and Organelle Biogenesis (eds Das, R.C. & Robbins, P.) 3–47 (Academic, San Diego, 1989).

    Google Scholar 

  15. Boeke, J. D. & Model, P. Proc. natn. Acad. Sci. U.S.A. 79, 5200–5204 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Yost, C. S. et al. Cell 34, 759–766 (1983).

    Article  CAS  Google Scholar 

  17. Rothman, R. E. et al. J. biol. Chem. 263, 10470–10480 (1988).

    CAS  PubMed  Google Scholar 

  18. Lingappa, V. R. et al. Proc. natn. Acad. Sci. U.S.A. 81, 456–460 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Perara, E. & Lingappa, V. R. J. Cell Biol. 101, 2292–2301 (1985).

    Article  CAS  Google Scholar 

  20. Eisenberg, D. A. Rev. Biochem. 53, 595–623 (1984).

    Article  CAS  Google Scholar 

  21. Davis, N. G. & Model, P. Cell 41, 607–614 (1985).

    Article  CAS  Google Scholar 

  22. Zerial, M. et al. Cell 48, 147–155 (1987).

    Article  CAS  Google Scholar 

  23. Widemann, M. et al. Nature 328, 830–833 (1987).

    Article  ADS  Google Scholar 

  24. Gilmore, R. & Blobel, G. Cell 42, 497–505 (1985).

    Article  CAS  Google Scholar 

  25. Sivasubramanian, N. & Nayak, D. P. Proc. natn. Acad. Sci. U.S.A. 84, 1–5 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Davis, G. L. & Hunter, E. J. Cell Biol. 105, 1191–1203 (1987).

    Article  CAS  Google Scholar 

  27. Szczesna, S. E. et al. Proc. natn. Acad. Sci. U.S.A. 85, 738–742 (1988).

    Article  ADS  Google Scholar 

  28. Lipp, J. & Dobberstein, B. J. Cell Biol. 106, 1813–1820 (1988).

    Article  CAS  Google Scholar 

  29. Siegel, V. & Walter, P. Cell 52, 39–49 (1988).

    Article  CAS  Google Scholar 

  30. Lingappa, V. R. J. clin Invest. 83, 739–751 (1989).

    Article  CAS  Google Scholar 

  31. Carlson, G. E. et al. Cell 46, 503–511 (1986).

    Article  CAS  Google Scholar 

  32. Hsiao, K. et al. Nature 338, 342–345 (1989).

    Article  ADS  CAS  Google Scholar 

  33. Westaway, D. et al. Cell 51, 651–662 (1987).

    Article  CAS  Google Scholar 

  34. Melton, D. et al. Nucleic Acids Res. 12, 7035–7056 (1984).

    Article  CAS  Google Scholar 

  35. Basler, K. et al. Cell 46, 417–428 (1986).

    Article  CAS  Google Scholar 

  36. Hansen, W. et al. Cell 45, 397–406 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yost, C., Lopez, C., Prusiner, S. et al. Non-hydrophobic extracytoplasmic determinant of stop transfer in the prion protein. Nature 343, 669–672 (1990). https://doi.org/10.1038/343669a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/343669a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing