Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular outflows in protostellar evolution

Abstract

MOLECULAR outflow is an energetic mass-ejection phenomenon associated with very early stage of stellar evolution1,2. The large kinetic energy involved in the phenomenon indicates that outflow may play an essential role in the process of star formation, particularly by extracting angular momentum3. Most of the previous searches have been strongly biased toward optical or near-infrared signposts of star formation1. They are not able, therefore, to provide the complete database necessary for a statistical study of the evolutionary status of molecular outflow. To overcome this difficulty, it is of vital importance to make an unbiased search of single molecular clouds for molecular outflows; here we report the final result of such a survey of the Lynds 1641 dark cloud. We show that molecular outflows are characterized by a total luminosity significantly greater than that of T Tauri stars. This indicates that molecular outflow corresponds to the main accretion phase of protostellar evolution, in which the luminosity excess is due to the gravitational energy released by dynamical mass accretion onto the protostellar core4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lada, C. J. A. Rev. Astr. Astrophys. 23, 267–317 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Fukui, Y. in Proc. ESO Workshop on Low Mass Star Formation and Pre-main Sequence Objects (ed. Reipurth, B.) (European Southern Observatory, Garching, in the press).

  3. Uchida, Y. & Shibata, K. Publs astr. Soc. Japan 37, 515–535 (1985).

    ADS  CAS  Google Scholar 

  4. Stahler, S. W., Shu, F. H. & Taam, R. E. Astrophys. J. 241, 637–654 (1980).

    Article  ADS  Google Scholar 

  5. Takaba, H. et al. Astron. Astrophys. 166, 276–282 (1986).

    ADS  CAS  Google Scholar 

  6. Reipurth, B. & Bally, J. Nature 320, 336–338 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Bally, J., Langer, W. D., Stark, A. A. & Wilson, R. W. Astrophys. J. 312, L45–L49 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Fukui, Y. et al. Astrophys. J. 311, L85–L88 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Fukui, Y. Vistas Astr. 31, 217–226 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Fukui, Y., Takaba, H., Iwata, T. & Mizuno, A. Astrophys. J. 325, L13–L15 (1988).

    Article  ADS  Google Scholar 

  11. Levreault, R. M. Astrophys. J. Suppl. 67, 283–371 (1988).

    Article  ADS  CAS  Google Scholar 

  12. IRAS Catalogs & Atlases, Explanatory Suppl. (eds Beichman, C. A., Neugebauer, G., Habing, H. J., Clegg, P. E. & Chester, T. J.) (U.S. Government Printing Office, Washington DC, 1984).

  13. Snell, R. L., Loren, R. B. & Plambeck, R. L. Astrophys. J. 239, L17–L22 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Strom, K. M. et al. Astrophys. J. Suppl. 71, 183–217 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Harris, S. in Proc. ESO-IRAM-Onsala Workshop on (Sub)millimeter Astronomy (eds Shaver, P. A. & Kjär, K.) 527–532 (European Southern Observatory, Garching, 1985).

    Google Scholar 

  16. Beichman, C. A. et al. Astrophys. J. 307, 337–349 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Hayashi, C. Publs astr. Soc. Japan 13, 450–452 (1961).

    ADS  Google Scholar 

  18. Herbig, G. H. & Bell, K. R. University of California, Lick Observatory Bulletin No. 1111, (1988).

  19. Cohen, M. & Kuhi, L. V. Astrophys. J. Suppl. 41, 743–843 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Rucinski, S. M. Astr. J. 90, 2321–2330 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Stahler, S. W. Astrophys. J. 274, 822–829 (1983).

    Article  ADS  Google Scholar 

  22. Shu, F. H., Adams, F. C. & Lizano, S. A. Rev. Astr. Astrophys. 25, 23–81 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Strom, S. E., Strom, K. M. & Edwards, S. in Proc. NATO Advanced Study Institute on Galactic and Extragalactic Star Formation (eds Pudritz, R. E. & Fich, M.) 53–88 (Kluwer, Dordrecht, 1988).

    Book  Google Scholar 

  24. Margulis, M. & Lada, C. J. Astrophys. J. 299, 925–938 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Iwata, T., Fukui, Y. & Ogawa, H. Astrophys. J. 325, 372–381 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukui, Y., Iwata, T., Takaba, H. et al. Molecular outflows in protostellar evolution. Nature 342, 161–163 (1989). https://doi.org/10.1038/342161a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/342161a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing