Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation

Abstract

THE dynamic response of nerve cells to synaptic activation and the spatial distribution of biochemical processes regulated by ion concentration are critically dependent on the cell-surface distribution of ion channels. In the hippocampus, intracellular calcium-ion concentration is thought to influence the biochemical events associated with kindling1,2, excitotoxicity3,4, and long-term potentiation5–12. Computer models of hippocampal pyramidal cells13 also indicate that calcium-channel location influences dynamic characteristics such as bursting14,15. Here, we have used in situ micro-fluorometric imaging16 in brain slices to directly measure the spatial distribution of calcium accumulation in guinea-pig CA1 pyramidal cells during trains of orthodromic synaptic stimulation. Calcium accumulation is substantial throughout the entire proximal section of the apical and basal dendrites. Most of this accumulation results from influx through non-NMDA (N-methyl-D-aspartate) voltage-gated calcium channels, and in the apical dendrite it drops steeply as the dendrite enters stratum moleculare, the termination zone of perforant path afferents. These results demonstrate a marked segregation of calcium-channel activity and directly show a spatial distribution of calcium accumulation during orthodromic synaptic activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wadman, W. J., Heinemann, U., Konnerth, A. & Neuhaus, S. Expl Brain Res. 57, 404–407 (1985).

    Article  CAS  Google Scholar 

  2. McNamara, J. O. et al. CRC Critical Rev. clin. Neurobiol. 1, 341–391 (1985).

    CAS  Google Scholar 

  3. Choi, D. W. Neuron 1, 623–634 (1988).

    Article  CAS  Google Scholar 

  4. Cavalheiro, E. A., Lehmann, J. & Turski, L. Frontiers in Excitatory Amino Acid Research (Liss, New York. 1988).

    Google Scholar 

  5. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

    Article  CAS  ADS  Google Scholar 

  6. Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Science 242, 81–84 (1988).

    Article  CAS  ADS  Google Scholar 

  7. Bliss, T. V. P. & Lomø, T. J. Physiol. (Lond.) 232, 331–356 (1973).

    Article  CAS  Google Scholar 

  8. Teyler, T. J. & DiScenna, P. A. Rev. Neurosci. 10, 131–161 (1987).

    Article  CAS  Google Scholar 

  9. Landfield, P. W. & Deadwyler, S. A. Long-Term Potentiation: From Biophysics to Behavior (Liss, New York, 1988).

    Google Scholar 

  10. Levy, W. B. & Steward, O. Brain Res. 175, 233–245 (1979).

    Article  CAS  Google Scholar 

  11. Kelso, S. R., Ganong, A. H. & Brown, T. H. Proc. natn. Acad. Sci. U.S.A. 83, 5326–5330 (1986).

    Article  CAS  ADS  Google Scholar 

  12. McNaughton, B. L. & Morris, R. G. M. Trends. Neurosci. 10, 408–415 (1987).

    Article  Google Scholar 

  13. Traub, R. D. & Llinàs, R. R. J. Neurophysiol. 42, 476–496 (1979).

    Article  CAS  Google Scholar 

  14. Wong, R. K. S. & Prince, D. A. Brain Res. 159, 385–390 (1978).

    Article  CAS  Google Scholar 

  15. Llinás, R. R. Science 242, 1654–1664 (1988).

    Article  ADS  Google Scholar 

  16. Tank, D. W., Sugimori, M., Connor, J. A. & Llinás, R. Science 242, 773–777 (1988).

    Article  CAS  ADS  Google Scholar 

  17. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  18. Honoré, T. et al. Science 241, 701–703 (1988).

    Article  ADS  Google Scholar 

  19. Mayer, M. L., MacDermott, A. B., Westbrook, G. L., Smith, S. J. & Barker, J. L. J. Neurosci. 7, 3230–3244 (1987).

    Article  CAS  Google Scholar 

  20. Connor, J. A., Wadman, W. J., Hockberger, P. E. & Wong, R. K. S. Science 240, 649–653 (1988).

    Article  CAS  ADS  Google Scholar 

  21. Schwartzkroin, P. A. & Slawsky, M. Brain Res. 135, 157–161 (1977).

    Article  CAS  Google Scholar 

  22. Wong, R. K. S., Prince, D. A. & Basbaum, A. I. Proc. natn. Acad. Sci. U.S.A. 76, 986–990 (1979).

    Article  CAS  ADS  Google Scholar 

  23. Bernardo, L. S., Musukawa, L. M. & Prince, D. A. J. Neurosci. 2, 1614–1622 (1982).

    Article  Google Scholar 

  24. Schwartzkroin, P. A. & Mueller, A. L. in Cerebral Cortex Vol. 6, Further Aspects of Cortical Function, Including Hippocampus (eds Jones, E. G. & Peters, A.) 295–343 (Plenum, New York, 1987).

    Google Scholar 

  25. Schwartzkroin, P. A. Brain Res. 85, 423–436 (1975).

    Article  CAS  Google Scholar 

  26. Yamamoto, C. Expl Brain Res. 14, 423–435 (1972).

    Article  CAS  Google Scholar 

  27. Tsien, R. Y. A. Rev. Neurosci. 12, 227–253 (1989).

    Article  CAS  Google Scholar 

  28. Poenie, M., Alderton, J., Steinhardt, R. & Tsien, R. Science 233, 886–889 (1986).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regehr, W., Connor, J. & Tank, D. Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature 341, 533–536 (1989). https://doi.org/10.1038/341533a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341533a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing