Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The αlytic protease pro-region does not require a physical linkage to activate the protease domain in vivo

Abstract

α-LYTlC protease, an extracellular serine protease of Lysobacter enzymogenes 495 , is synthesized as a pre-pro-protein1. Previously it has been shown that when expressed in Escherichia coli, the protein is autocatalytically processed in the periplasmic space, and that the functional protease domain accumulates extracel-lularly2. Engineered proteins lacking the 166 amino-acid pro-region were enzymatically inactive and remained cell-associated2. By independently expressing the pro- and protease domains in vivo, evidence is provided here that direct covalent linkage is not required for production of active protease. We postulate that the pro-region acts as a template to promote the folding of the protease domain into an active configuration. Our results, combined with recent experiments on the evolutionarily unrelated subtilisin E (ref. 3), suggest that the ability of the pro-region of these bacterial proteases to facilitate folding of their protease domains is not a curiosity of a single system, but may reflect a general property of extracellular bacterial serine proteases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Silen, J. L., McGrath, C. N., Smith, K. R. & Agard, D. A. Gene 69, 237–244 (1988).

    Article  CAS  Google Scholar 

  2. Silen, J. L., Frank, D., Fujishige, A., Bone, R. & Agard, D. A. J. Bact. 171, 1320–1325 (1989).

    Article  CAS  Google Scholar 

  3. Zhu, X., Ohta, Y., Jordan, F. & Inouye, M. Nature 339, 483–484 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Anfinsen, C. B. Proc. natn. Acad. Sci. U.S.A. 47, 1308–1314 (1961).

    Article  ADS  Google Scholar 

  5. Creighton, T. E. J. phys. Chem. 89, 2452–2459 (1985).

    Article  CAS  Google Scholar 

  6. Ikai, A., Fish, W. & Tanford, C. J. J. molec. Biol. 145, 265–280 (1973).

    Google Scholar 

  7. Ikemura, H., Takagi, H. & Inouye, M. J. biol. Chem. 262, 7859–7864 (1987).

    CAS  PubMed  Google Scholar 

  8. Ghrayeb, J. et al. EMBO J. 10, 2437–2422 (1984).

    Article  Google Scholar 

  9. Kaplan, H., Symonds, V. B., Dugas, H. & Whitaker, D. R. Can. J. Biochem. 48, 649–658 (1970).

    Article  CAS  Google Scholar 

  10. Fujinaga, M., Delbaere, L. T. J., Brayer, G. D. & James, M. N. G. J. molec. Biol. 183, 479–502 (1985).

    Article  Google Scholar 

  11. Jacobs, M., Eliasson, M., Uhlen, M. & Flock, J. I. Nucleic Acids Res. 13, 8914–8926 (1985).

    Article  Google Scholar 

  12. Shimada, H. et al. Biotechnology 2, 75–85 (1985).

    CAS  Google Scholar 

  13. Stahl, M. L. & Ferrari, E. J. Bact. 158, 411–418 (1984).

    CAS  Google Scholar 

  14. Takagi, M., Imanaka, T. & Aiba, S. J. Bact. 163, 824–831 (1985).

    CAS  PubMed  Google Scholar 

  15. Vasantha, N. et al. J. Bact. 159, 811–819 (1984).

    CAS  PubMed  Google Scholar 

  16. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A. & Chen, E. Y. Nucleic Acids Res. 11, 7911–7925 (1983).

    Article  CAS  Google Scholar 

  17. Yang, M. Y., Ferrari, E., & Henner, D. J. J. Bact. 160, 15–21 (1984).

    CAS  PubMed  Google Scholar 

  18. Henderson, G., Krygsman, P., Liu, C. J., Davey, C. C. & Malek, L. T. J. Bact. 169, 3778–3784 (1987).

    Article  CAS  Google Scholar 

  19. Hemmingsen, S. et al. Nature 333, 330–334 (1988).

    Article  ADS  CAS  Google Scholar 

  20. McMullin, T. W. & Hallberg, R. L. Molec. cell. Biol. 8, 371–380 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silen, J., Agard, D. The αlytic protease pro-region does not require a physical linkage to activate the protease domain in vivo. Nature 341, 462–464 (1989). https://doi.org/10.1038/341462a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/341462a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing