Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dual regulatory role for thyroid-hormone receptors allows control of retinoic-acid receptor activity

Abstract

BOTH thyroid hormone (T3) and retinoic acid signal essential steps in development, differentiation and morphogenesis. Specific nuclear receptors for these ligands have recently been cloned1-8. Previously we have noted a close homology between the DNA-binding domains of the ε-retinoic acid receptor (RAR-ε, also designated RAR-β), the thyroid hormone receptors and the oes-trogen receptor2,9. We have now found that RAR-ε is very efficient at inducing transcription from two distinct thyroid-hormone responsive elements (TREs). Transcription induced by ligand-activated RAR-ε from a TRE can, however, be repressed by thyroid-hormone receptor in the absence of its ligand. Conversely, in the presence of its ligand, thyroid-hormone receptor will activate tran-scription from a TRE irrespective of the presence of unbound RAR. The use of hybrid receptors has shown that the DNA-binding domain of RAR is the essential target for inhibition by thyroid-hormone receptors. These data, together with in vitro DNA-binding studies, suggest that thyroid-hormone receptors may have dual regulatory roles: in the presence of hormone they function as TRE-specific transcriptional activators; in the absence of hormone, however, they can function as TRE-specific repressers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Benbrook, D. & Pfahl, M. Science 238, 788–791 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Benbrook, D., Lernhardt, E. & Pfahl, M. Nature 333, 669–672 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Sap, J. et al. Nature 324, 635–640 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Weinberger, C. et al. Nature 324, 641–646 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Thompson, C. C., Weinberger, C., Lebo, R. & Evans, R. M. Science 237, 1610–1613 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Petkovich, M. et al. Nature 330, 444–450 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Giguere, V. et al. Nature 330, 624–629 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Brand, N. et al. Nature 332, 850–853 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Evans, R. M. Science 240, 885–895 (1988).

    ADS  Google Scholar 

  10. Izumo, S. & Mahdavi, V. Nature 334, 539 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Glass, C. K., Holloway, J. M., Devary, O. V. & Rosenfeld, M. G. Cell 54, 313–323 (1988).

    Article  CAS  Google Scholar 

  12. Klein-Hitpass, L., Schorpp, M., Wagner, U. & Ryffel, G. U. Cell 46, 1053–1061 (1986).

    Article  CAS  Google Scholar 

  13. Sporn, M. B., Roberts, A. B. & Goodman, D. S. The Retinoids Vol. 1–2 (Academic, Orlando, Florida, 1984).

    Google Scholar 

  14. Umesono, K., Giguere, V., Glass, C. K., Rosenfeld, M. G. & Evans, R. M. Nature 336, 262–265 (1988).

    Article  ADS  CAS  Google Scholar 

  15. De Groot, L. J., Larsen, P. R., Refetoff, S. & Stanbury, J. B. The Thyroid and its Diseases (Wiley, New York, 1984).

    Google Scholar 

  16. Willmann, T. & Beato, M. Nature 324, 688–691 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Schauer, G., Chaleparis, G., Willmann, T. & Beato, M. Proc. natn. Acad. Sci. U.S.A. 86, 1123–1127 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Koenig, R. J. et al. Nature 337, 659–661 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Glass, C. K. et al. Nature 329, 738–741 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Grover, A., Oshima, R. G. & Adamson, E. D. J. Cell Biol. 96, 1690–1696 (1983).

    Article  CAS  Google Scholar 

  21. Gorman, C. M., Moffat, L. F. & Howard, B. H. Molec. cell. Biol. 2, 1044–1051 (1982).

    Article  CAS  Google Scholar 

  22. Ellis, L. et al. Cell 45, 721–723 (1986).

    Article  CAS  Google Scholar 

  23. Damm, K., Thompson, C. C. & Evans, R. M. Nature 339, 593–597 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graupner, G., Wills, K., Tzukerman, M. et al. Dual regulatory role for thyroid-hormone receptors allows control of retinoic-acid receptor activity. Nature 340, 653–656 (1989). https://doi.org/10.1038/340653a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340653a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing