Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-equilibrium molecular evaporation of carboxylic acid dimers

Abstract

IN molecular liquids that may form dimers, for example by hydrogen-bonding, direct evaporation of dimers is possible when these form stable molecules. A gradual change from monomer to dimer evaporation would be expected at pairwise molecular bond energies of intermediate strength—that is, ~ 0.01–1 eV, a range of values that is typical of hydrogen-bond strengths in liquids. Here we use molecular-beam techniques to study the evaporation of large fractions of acetic and formic acid dimers from the pure liquids and from solutions. We find that their velocity distributions are non-maxwellian, and that the average dimer energies exceed the temperature of the liquid surface by 100–200 K. These unexpected effects may be qualitatively explained by a crude model in which surface-tension forces act upon non-wetting, twin-hydrogen-bond dimer inclusions within an extended, monomeric hydrogen-bonded 'sheet' at the liquid surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Knudsen, M. Ann. Phys. 28, 75–130 (1909).

    Article  CAS  Google Scholar 

  2. Anderson, J. B. in Molecular Beams and Low Density Gas Dynamics (ed. Wegener, P. P.) (Dekker, New York, 1974).

    Google Scholar 

  3. Faubel, M., Schlemmer, S. & Toennies, J. P. Z. Phys. D10, 269–277 (1988).

    ADS  Google Scholar 

  4. Reimer, J. R. & Watts, R. O. Chem. Phys. 85, 83–112 (1984).

    Article  Google Scholar 

  5. Vernon, M. F. et al J. chem. Phys. 77, 47–57 (1982).

    Article  ADS  CAS  Google Scholar 

  6. Dyke, T. R., Mack, K. M. & Muenter, J. S. J. chem. Phys. 66, 498–510 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Chao, J. & Zwolinski, B. J. J. phys. Chem. Ref. Data 7, 363–377 (1978).

    Article  ADS  CAS  Google Scholar 

  8. Bertagnolli, H. Chem. Phys. Lett. 93, 287–292 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Sievert, R., Cadez, I., van Doren, J. & Castleman, A. W. J. phys. Chem. 88, 4503–4505 (1984).

    Article  Google Scholar 

  10. Mori, Y., Kitagawa, T., Yamamoto, T., Yamada, K. & Nagahara, S. Bull. chem. Soc. Jap. 53, 3492–3495 (1980).

    Article  CAS  Google Scholar 

  11. Mori, Y. & Kitagawa, T. in Atomic Collision Research in Japan 13, 138–141 (Society for Atomic Collision Research, Riken, Saitama 351–01, 1987).

    Google Scholar 

  12. Boltzmann, L. Wien. Ber. 63, 397–420 (1871).

    Google Scholar 

  13. Richardson, O. W. Phil. Mag. 28, 633–647 (1914).

    Article  CAS  Google Scholar 

  14. Comsa, G., David, R. & Rendulic, D. Phys. Rev. Lett. 38, 775–778 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Comsa, G. & David, R. Surf. Sci. Rep. 5, 145–198 (1985).

    Article  ADS  CAS  Google Scholar 

  16. CRC Handbook of Chemistry and Physics (ed West R C ) (CRC Press Inc., Florida. 1977).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faubel, M., Kisters, T. Non-equilibrium molecular evaporation of carboxylic acid dimers. Nature 339, 527–529 (1989). https://doi.org/10.1038/339527a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339527a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing