Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of reverse rigor chevrons by myosin heads

Abstract

THE uniform angle and conformation of myosin subfragment 1 (S1) bound to actin filaments (F-actin) attest to the precise alignment and stereospecificity of the binding of these two contractile proteins1,2. Because actin filaments are polar3, myosin heads must swing or rotate about the head–tail junction in order to bind. Electron microscopy of isolated thick filaments4 and of myosin molecules5 suggests that the molecules are flexible, but myosin fragments and crossbridges have been reported not to interact with inappropriately oriented actin filaments6,7. Here we describe myofibrillar defects engendered by a site-directed mutation within the flight-muscle-specific actin gene of the fruitfly Drosophila. The mutation apparently retards sarcomere assembly: peripheral thick and thin filaments are misregistered and not incorporated into the Z-line. Therefore, a myosin filament encounters thin filaments with the 'wrong' polarity. We show that myosin heads tethered in a single thick filament can bind with opposite rigor crossbridge angles to flanking thin filaments, which are apparently of opposite polarities. Preservation of identical actomyosin interfaces requires that sets of heads originating from opposite sides of the thick filament swivel 180° relative to each other, implying that myosin crossbridges are as flexible as isolated molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Amos, L. A., Huxley, H. E., Holmes, K. C., Goody, R. S. & Taylor, K. A. Nature 299, 467–469 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Milligan, R. A. & Flicker, P. F. J. Cell. Biol. 105, 29–39 (1987).

    Article  CAS  Google Scholar 

  3. Huxley, H. E. J. molec. Biol. 7, 2381–308 (1963).

    Article  Google Scholar 

  4. Knight, P. & Trinick, J. J. molec. Biol. 177, 461–482 (1984).

    Article  CAS  Google Scholar 

  5. Winkelmann, D. A. & Lowey, S. J. molec. Biol. 188, 595–612 (1986).

    Article  CAS  Google Scholar 

  6. Sheetz, M. & Spudich, J. Nature 303, 31–35 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Trombitas, K. & Tigyi-Seges, A. Nature 309, 168–170 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Fyrberg, E. A. Oxford Surv. Eukaryotic Genes 1, 61–86 (1984).

    CAS  Google Scholar 

  9. Ball, E. et al. Cell 51, 221–228 (1987).

    Article  CAS  Google Scholar 

  10. Hiromi, Y., Okamoto, H., Gehring, W. J. & Hotta, Y. Cell 44, 293–301 (1986).

    Article  CAS  Google Scholar 

  11. Okamoto, H. et al. EMBO J. 5, 589–596 (1986).

    Article  CAS  Google Scholar 

  12. Reedy, M. K. & Reedy, M. C. J. molec. Biol. 185, 145–176 (1985).

    Article  CAS  Google Scholar 

  13. Taylor, K. A., Reedy, M. C., Cordova, L. & Reedy, M. K. Nature 310, 285–291 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Trombitas, K., Baatsen, P. & Pollack, G. J. ultrastruct. molec. Str. Res. 97, 39–49 (1986).

    Article  Google Scholar 

  15. Walker, M. & Trinick, J. J. molec. Biol. 192, 661–667 (1986).

    Article  CAS  Google Scholar 

  16. Walker, M. & Trinick, J. J. Muscle Res. Cell Motil. 9, 359–366 (1988).

    Article  CAS  Google Scholar 

  17. Mendelson, R. A., Morales, M. F. & Botts, J. Biochemistry 12, 2250–2255 (1973).

    Article  CAS  Google Scholar 

  18. Thomas, D. D., Seidel, J. C., Hyde, J. S. & Gergely, J. Proc. natn. Acad. Sci. U.S.A. 72, 1729–1733 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Spradling, A. C. & Rubin, G. M. Science 218, 341–347 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Nakamaye, K. L. & Eckstein, F. Nucleic Acids Res. 14, 9679–9698.

  21. Maxam, A. & Gilbert, W. Meth. Enzym. 65, 499–460 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reedy, M., Beall, C. & Fyrberg, E. Formation of reverse rigor chevrons by myosin heads. Nature 339, 481–483 (1989). https://doi.org/10.1038/339481a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339481a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing