Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Orbital evolution of circumplanetary dust by resonant charge variations

Abstract

Vast ethereal rings composed of micrometre-sized particles have been detected about the three giant planets so far visited by Voyager. Jupiter's diffuse halo, main ring1 and gossamer ring2 are visible because of the dust they contain. Small particles are also important constituents of Saturn's tenuous outlying rings: the contorted slender F ring3, the G ring4–6 and the extensive E ring6,7. At Uranus, dust was discerned by imaging8 amidst, as well as inwards of, the nine previously known narrow rings; plasma measurements9,10 suggest that micrometre grains are also present in an orbit of 4.4 times the planet's radius, where Voyager 2 pierced the planet's equatorial plane. Here we identify an orbital evolution mechanism for gravitationally dominated dust that may tem-porarily overwhelm other processes, and we derive evolution rates that agree with numerical integrations; we also indicate briefly how this process could affect the location of the faint rings evident today.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Showalter, M. R., Burns, J. A., Cuzzi, J. N. & Pollack, J. B. Icarus 69, 458–498 (1987).

    Article  ADS  Google Scholar 

  2. Showaller, M. R., Burns, J. A., Cuzzi, J. N. & Pollack, J. B. Nature 316, 526–528 (1985).

    Article  ADS  Google Scholar 

  3. Ockert, M. E., Pollack, J. B., Showalter, M. R. & Doyle, L. R. Bull. Am. astr. Soc. 19, 883 (1987).

    ADS  Google Scholar 

  4. Van Allen, J. A. J. geophys. Res. 88, 6911–6918 (1983).

    Article  ADS  CAS  Google Scholar 

  5. Van Allen, J. A. J. geophys. Res. 92, 1153–1159 (1987).

    Article  ADS  Google Scholar 

  6. Burns, J. A., Showalter, M. R. & Morfill, G. E. in Planetary Rings (eds Greenberg, R. & Brahic, A.) 200–272 (Univ. of Arizona Press, Tucson, 1984).

    Google Scholar 

  7. Pang, K. V., Voge, C. C., Rhoads, J. W. & Ajello, J. M. J. geophys. Res. 89, 9459–9470 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Smith, B. A. et al. Science 233, 43–64 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Meyer-Vernet, N., Aubier, M. G. & Pedersen, B. M. Geophys. Res. Lett. 13, 617–620 (1986).

    Article  ADS  Google Scholar 

  10. Gurnett, D. A. et al. J. geophys. Res. 92, 14949–14958 (1987).

    Article  ADS  Google Scholar 

  11. Schaffer, L. & Burns, J. A. J. geophys. Res. 92, 2264–2280 (1987).

    Article  ADS  Google Scholar 

  12. Mendis, D. A., Hill, J. R., Ip, W.-H., Goertz, C. K. & Grün, E. in Saturn (eds Gehrels T. & Matthews, M. S.) 546–589 (Univ. of Arizona Press, Tucson 1984).

    Google Scholar 

  13. Burns, J. A., Schaffer, L. E. Greenberg, R. J. & Showalter, M. R. Nature 316, 115–119 (1985).

    Article  ADS  Google Scholar 

  14. Northrop, T. G. & Hill, J. R. J. geophys. Res. 88, 1–11 (1983).

    Article  ADS  Google Scholar 

  15. Morfill, G. E., Grim, E. & Johnson, T. V. Planet. Space Sci. 28, 1087–1100 (1980).

    Article  ADS  Google Scholar 

  16. Grün, E., Morfill, G. E. & Mendis, D. A. in Planetary Rings (eds Greenberg, R. & Brahic, A.) 275–332 (Univ. of Arizona Press, Tucson, 1984).

    Google Scholar 

  17. Northrop, T. G., Mendis, D. A. & Schaffer, L. Icarus (in the press).

  18. Morfill, G. E., Grüin, E. & Johnson, T. V. J. geophys. Res. 88, 5573–5579 (1983).

    Article  ADS  Google Scholar 

  19. Whipple, E. C. Rep. Prog. Phys. 44, 1197–1250 (1981).

    Article  ADS  Google Scholar 

  20. Hill, J. R. & Mendis, D. A. Moon and Planets 21, 3–15 (1979).

    Article  ADS  Google Scholar 

  21. Schaffer, L. E. thesis, Cornell Univ., New York (1989).

  22. Burns, J. A. Am. J. Phys. 44, 944–949 (1976); Erratum 45, 1230 (1977).

    Article  ADS  Google Scholar 

  23. Burns, J. A., Lamy, P. L. & Soter, S. Icarus 40, 1–48 (1979).

    Article  ADS  Google Scholar 

  24. Burns, J. A., Cuzzi, J. N. & Showalter, M. R. Bull. Am. astr. Soc. 15, 1013–1014 (1983).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burns, J., Schaffer, L. Orbital evolution of circumplanetary dust by resonant charge variations. Nature 337, 340–343 (1989). https://doi.org/10.1038/337340a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337340a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing