Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2

Abstract

Participate NaCl and NaBr are known1,2 to react with NO2 in air at concentrations of a few parts per 106 (p.p.m.) to form the corresponding nitrosyl halides XNO (X = Cl, Br), a process that may contribute to the photochemistry of polluted marine areas and remote regions such as the Arctic3,4. Here we report experimental evidence that gaseous chlorine nitrate (ClONO2) and dinitrogen pentoxide (N2O5) at p.p.m. concentrations also react with NaCl particles at 298 K, to form Cl2 and ClNO2 respectively. Thus, the chloride ion in a neutral salt can be transformed into gaseous, photochemically active forms of chlorine at 298 K in a manner analogous to that reported recently for the reactions of HCl in ice with ClONO2 and N2O5 at 185–200 K (refs 5–8). This work suggests that reactions of N2O5 with NaCl in tropospheric marine areas, and possibly in cold climates where chloride salts are used on roads in the winter, should be considered in assessing the atmospheric chemistry of these regions. Furthermore, if the reactions of ClONO2 and N2O5 with NaCl occur also at stratospheric temperatures and if NaCl is present in significant concentrations, these reactions may provide another mechanism for recycling ionic halide ions into gaseous species and hence should be considered in models of stratospheric ozone depletion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Finlayson-Pitts, B. J. Nature 306, 676–677 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Finlayson-Pitts, B. J. & Johnson, S. N. Atmos. Envir. 22, 1107–1112 (1988).

    Article  CAS  Google Scholar 

  3. Sturges, W. T. Atmos. Envir. (in the press).

  4. Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J. & Rasmussen, R. A. Nature 334, 138–141 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Molina, M. J., Tso, T-L., Molina, L. T. & Wang, F. C.-Y. Science 238, 1253–1257 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Tolbert, M. A., Rossi, M. J., Malhotra, R. & Golden, D. M. Science 238, 1258–1260 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Leu, M.-T. Geophys. Res. Lett. 15, 17–20 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Tolbert, M. A., Rossi, M. J. & Golden, D. M. Science 240, 1018–1021 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Finlayson-Pitts, B. J. & Pitts, J. N. Jr Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley, New York, 1986).

    Google Scholar 

  10. Robbins, R. C., Cadle, R. D. & Eckhardt, D. L. J. Met. 16, 53–56 (1959).

    Article  CAS  Google Scholar 

  11. Cadle, R. D. & Robbins, R. C. Discuss. Faraday Soc. 30, 155–161 (1960).

    Article  Google Scholar 

  12. Schroeder, W. H. & Urone, P. Envir. Sci. Technol. 8, 756–758 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Chung, T. T., Dash, J. & O'Brien, R. J. 9th Int. Cong. Electron Microsc. 440–441 (1978).

  14. Molina, L. T., Molina, M. J., Stachnik, R. A. & Tom, R. D. J. phys. Chem. 89, 3779–3781 (1985).

    Article  CAS  Google Scholar 

  15. Hatakeyama, S. & Leu, M.-T. Geophvs. Res. Lett. 13, 1343–1346 (1986).

    Article  ADS  CAS  Google Scholar 

  16. Friedl, R. R., Goble, J. H. & Sander, S. P. Geophys. Res. Lett. 13, 1351–1354 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Atkinson, R. A., Aschmann, S. M., Tuazon, E. C., Goodman, M. A. & Winer, A. M. J. atmos. Chem. 5, 83–90 (1987).

    CAS  Google Scholar 

  18. Molina, L. T., Spencer, J. E. & Molina, M. J. Chem. Phys. Lett. 45, 158–162 (1977).

    Article  ADS  CAS  Google Scholar 

  19. DeMore, W. B. et al. Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation No. 8, JPL Publn no. 87-41, 15 September 1987.

    Google Scholar 

  20. Bernitt, D. L., Miller, R. H. & Hisatsune, I. C. Spectrochim. Acta 23A, 237–248 (1967).

    Article  ADS  CAS  Google Scholar 

  21. Crutzen, P. J. & Arnold, F. Nature 324, 651–655 (1986).

    Article  ADS  CAS  Google Scholar 

  22. Wofsy, S. C., Molina, M. J., Salawitch, R. J., Fox, L. E. & McElroy M. B. J. geophys. Res. 93, 2442–2450 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Atkinson, R. A., Winer, A. M. & Pitts, J. N. Jr Atmos. Envir. 20, 331–339 (1986).

    Article  CAS  Google Scholar 

  24. Rowland, F. S., Sato, H., Khwaja, H. & Elliott, S. M. J. phys. Chem. 90, 1985–1988 (1986).

    Article  CAS  Google Scholar 

  25. Platt, U., Winer, A. M., Biermann, H., Atkinson, R. & Pitts, J. N. Jr Envir. Sci. Technol. 18, 365–369 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Rowland, F. S. & Rogers, P. J. Proc. natn. Acad. Sci. U.S.A. 79, 2737–2739 (1982).

    Article  ADS  CAS  Google Scholar 

  27. Lamb, J. J. & Benson, S. W. J. geophys. Res. 91, 8683–8689 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Ager, J. W. III & Howard, C. J. Geophys. Res. Lett. 13, 1395–1398 (1986).

    Article  ADS  CAS  Google Scholar 

  29. Shedlovsky, J. P. & Paisley, S. Tellus 18, 499–503 (1966).

    Article  ADS  CAS  Google Scholar 

  30. Delany, A. C., Shedlovsky, J. P. & Pollock, W. H. J. geophys. Res. 79, 5646–5650 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finlayson-Pitts, B., Ezell, M. & Pitts, J. Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature 337, 241–244 (1989). https://doi.org/10.1038/337241a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/337241a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing