Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and assembly of protocatechuate 3,4-dioxygenase

Abstract

Dioxygenases catalyse the cleavage of molecular oxygen with subsequent incorporation of both oxygen atoms into organic substrates. Some of the best-studied dioxygenases have been isolated from bacteria where they catalyse the critical ring-opening step in the biodegradation of aromatic compounds. These bacterial enzymes generally contain nonheme ferric iron as the sole cofactor. Protocatechuate 3,4-dioxygenase (3,4-PCD) was one of the first such enzymes recognized1 and catalyses the intradiol cleavage of protocatechuic acid by oxygen to produce β- car boxy- cis,cis-muconic acid. Previous studies have shown that the 3,4-PCD found in Pseudomonas aeruginosa is an oligomer with a relative molecular mass (Mr) of 587,000 (587K) containing 12 copies each of α (22.3K) and β (26.6K) subunits2–6. The X-ray structure determination of 3,4-PCD reveals the catalytic iron environment required for oxygenolytic cleavage of aromatic rings and also provides a novel holoenzyme assembly with cubic 23(T) symmetry and first examples of mixed β-barrel domains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stanier, R. Y. & Ingraham, J. L. J. biol. Chem. 210, 799–808 (1954).

    CAS  PubMed  Google Scholar 

  2. Ohlendorf, D. H., Weber, P. C. & Lipscomb, J. D. J. molec. Biol. 195, 225–227 (1987).

    Article  CAS  Google Scholar 

  3. Kohlmiller, N. & Howard, J. B. J. biol. Chem. 254, 7292–7308 (1979).

    Google Scholar 

  4. Kohlmiller, N. & Howard, J. B. J. biol. Chem. 254, 7309–7315 (1979).

    CAS  PubMed  Google Scholar 

  5. Iwaki, M., Kagamiyama, H. & Nozaki, M. J. Biochem. 86, 1159–1162 (1979).

    Article  CAS  Google Scholar 

  6. Iwaki, M., Kagamiyama, H. & Nozaki, M. Archs Biochem. Biophys. 210, 210–223 (1981).

    Article  CAS  Google Scholar 

  7. Jones, T. A. J. appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  8. Jones, T. A. & Thirup, S. EMBO J. 5, 819–822 (1986).

    Article  CAS  Google Scholar 

  9. Finzel, B. C. Proteins: Structure, Function and Genetics (in the press).

  10. Bernstein, F. C. et al. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  11. Ponder, J. W. & Richards, F. M. J. molec. Biol. 195, 775–791 (1987).

    Article  Google Scholar 

  12. Richardson, J. S. Nature 268, 495–500 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Rossmann, M. G. & Argos, P. A. Rev. Biochem. 50, 497–532 (1981).

    Article  CAS  Google Scholar 

  14. Ringe, D., Petsko, G. A., Yakamura, F., Suzuki, K. & Ohmori, D. Proc. natn. Acad. Sci. U.S.A. 80, 3879–3883 (1983).

    Article  ADS  CAS  Google Scholar 

  15. Stallings, W. C., Powers, T. B., Pattridge, G. A., Fee, J. A. & Ludwig, M. L. Proc. natn. Acad. Sci. U.S.A. 83, 3884–3888 (1983).

    Article  ADS  Google Scholar 

  16. Pyrz, J. W., Roe, A. L., Stern, L. J. & Que, L. Jr J. Am. chem. Soc. 107, 614–620 (1985).

    Article  CAS  Google Scholar 

  17. Whittaker, J. W. & Lipscomb, J. D. J. biol. Chem. 259, 4487–4495 (1984).

    CAS  PubMed  Google Scholar 

  18. Bull, C. & Ballou, D. P. J. biol. Chem. 256, 12673–12680 (1981).

    CAS  PubMed  Google Scholar 

  19. Whittaker, J. W., Lipscomb, J. D., Kent, T. A. & Munck, E. J. biol. Chem. 259, 4466–4475 (1984).

    CAS  PubMed  Google Scholar 

  20. Durham, D. R., Stirling, L. A., Ornston, L. N. & Perry, J. J. Biochemistry 19, 149–155 (1980).

    Article  CAS  Google Scholar 

  21. Ludwig, M. L., Weber, L. D. & Ballou, D. P. J. biol. Chem. 259, 14840–14842 (1984).

    CAS  PubMed  Google Scholar 

  22. Howard, A. J. et al. J. appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  23. Terwilliger, T. C., Kim, S.-H. & Eisenberg, D. Acta crystallogr. A43, 1–5 (1987).

    Article  CAS  Google Scholar 

  24. Argos, P. & Rossmann, M. G. Acta crystallogr. B22, 2975–2979 (1976).

    Article  Google Scholar 

  25. Terwilliger, T. C. & Eisenberg, D. Acta crystallogr. A39, 813–817 (1983).

    Article  CAS  Google Scholar 

  26. Bricogne, G. Acta crystallogr. A32, 833–847 (1976).

    ADS  Google Scholar 

  27. Wang, B. C. Meth. Enzym. 115, 90–112 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohlendorf, D., Lipscomb, J. & Weber, P. Structure and assembly of protocatechuate 3,4-dioxygenase. Nature 336, 403–405 (1988). https://doi.org/10.1038/336403a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336403a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing