Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Light emission from colliding ice particles

Abstract

The electrification of thunderstorms is the result of charge transfer during interactions between cloud and precipitation particles1–4. Many laboratory studies with initially uncharged particles5–10 have shown that charge is transferred when ice crystals collide with soft hailstones, the charge magnitudes being highly dependent on cloud conditions. Here we describe laboratory experiments which show that the charge transferred during collisions of this type is adequate to account for thunderstorm electrification, but that the net charge transfer is limited, perhaps as a result of local corona breakdown. Light emission from the corona has now been detected. Relatively large charge transfers may occur during contact, but this charge remains essentially localized at the interacting surfaces long enough for corona discharge to cause some charge to return as the particles separate. These results indicate the need for revised charge transfer values in models of thunderstorm electrification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Krehbiel, P. R., Brook, M. & McCrory, R. A. J. geophys. Res. 84, 2432–2456 (1979).

    Article  ADS  Google Scholar 

  2. Lhermitte, R. & Krehbiel, P. R. IEEE Trans. Geosci. Electron. GE17, 162–171 (1979).

    Article  ADS  Google Scholar 

  3. Gardiner, B., Lamb, D., Pitter, R., Hallett, J. & Saunders, C. P. R. J. geophys. Res. 90, 6079–6086 (1985).

    Article  ADS  Google Scholar 

  4. Dye, J. E. et al. J. geophys. Res. 91, 1231–1247 (1986).

    Article  ADS  Google Scholar 

  5. Reynolds, S. E., Brook, M. & Gourley, M. F. J. Met. 14, 426–436 (1957).

    Article  Google Scholar 

  6. Church, C. R. thesis, Univ. Durham (1966).

  7. Marshall, B. J. P., Latham, J. & Saunders, C. P. R. Q. Jl R. met. Soc. 104, 163–178 (1978).

    Article  ADS  Google Scholar 

  8. Gaskell, W. & Illingworth, A. J. Q. Jl R. met. Soc. 106, 841–854 (1980).

    Article  ADS  Google Scholar 

  9. Jayaratne, E. R., Saunders, C. P. R. & Hallett, J. Q. Jl R. Met. Soc. 109, 609–630 (1983).

    Article  ADS  Google Scholar 

  10. Keith, W. D. thesis, Univ. Manchester (1987).

  11. Christian, H. et al. Q. Jl R. met. Soc. 106, 159–174 (1980).

    Article  ADS  Google Scholar 

  12. Gaskell, W. Q. Jl R. met. Soc. 107, 955–966 (1981).

    Article  ADS  Google Scholar 

  13. Caranti, J. M. & Illingworth, A. J. J. geophys. Res. 88, 8483–8489 (1983).

    Article  ADS  Google Scholar 

  14. Mason, J. M. Proc. R. Soc. 415, 303–315 (1988).

    Article  ADS  Google Scholar 

  15. Saunders, C. P. R. Weather 43, 318–324 (1988).

    Article  ADS  Google Scholar 

  16. Hallett, J. & Saunders, C. P. R. J. atmos. Sci. 36, 2230–2235 (1979).

    Article  ADS  Google Scholar 

  17. Jayaratne, E. R. & Saunders, C. P. R. J. geophys. Res. 90, 13063–13066 (1985).

    Article  ADS  Google Scholar 

  18. Caranti, J. & Illingworth, A. J. Nature 284, 44–46 (1980).

    Article  ADS  Google Scholar 

  19. Keith, W. D. & Saunders, C. P. R. Preprints Almos. Elec. Conf., Uppsala (1988).

  20. Caranti, J. M. & Illingworth, A. J. J. phys. Chem. 87, 4078–4083 (1983).

    Article  CAS  Google Scholar 

  21. Griffiths, R. F. & Latham, J. Q. J. R. met. Soc. 100, 163–180 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keith, W., Saunders, C. Light emission from colliding ice particles. Nature 336, 362–364 (1988). https://doi.org/10.1038/336362a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336362a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing