Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products

Abstract

SV40 large T antigen contains a small region of amino acid sequence, conserved among the papovaviruses, that shows considerable similarity to conserved domain 2 of the adenovirus E1A oncogene, a domain which plays an important role in the E1A transforming functions. To learn whether the analogous SV40 T antigen sequences could substitute functionally for E1A domain 2, a chimaeric gene was constructed, coding for T antigen amino acid residues 101 to 118 in place of E1A domain 2. The resulting product showed much of the activity of the wild-type E1A products. It induced proliferation of primary BRK cells and cooperated with the ras oncogene to transform these cells fully. In addition, the chimaeric protein coprecipitated two cellular proteins whose specific binding to the E1A products depends on the presence of domain 2. The activity of the chimaeric product suggests that a similar functional unit exists in the transforming proteins of both SV40 and adenovirus, and that these proteins may exert their cell growth regulating effects through similar mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Houweling, A., van den Elsen, P. J. & van der Eb, A. J. Virology 105, 537–550 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Ruley, H. E. Nature 304, 602–606 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Moran, E. & Mathews, M. B. Cell 48, 177–178 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Kimelman, D., Miller, J. S., Porter, D. & Roberts, B. E. J. Virol. 53, 399–409 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Haley, K. P., Overhauser, G., Babiss, L. E., Ginsberg, H. S. & Jones, N. C. Proc. natn. Acad. Sci. U.S.A. 81, 5734–5738 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Montell, C., Courtois, G., Eng, C. & Berk, A. Cell 36, 951–961 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Moran, E., Grodzicker, T., Roberts, R. J., Mathews, M. B. & Zerler, B. J. Virol. 57, 765–775 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zerler, B. et al. Molec. cell Biol. 6, 887–899 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kuppuswamy M. N. & Chinnadurai, G. Virology 159, 31–38 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Lillie, J. W., Green, M. & Green, M. R. Cell 46, 1043–1051 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Lillie, J. W., Lowenstein, P. W., Green, M. R. & Green, M. Cell 50, 1091–1100 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Moran, E., Zerler, B., Harrison, T. M. & Mathews, M. B. Molec. cell. Biol. 6, 3470–3480 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moran, E. & Zerler, B. Molec. cell. Biol. 8, 1756–1764 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schneider, J. F., Fisher, F., Goding, C. R. & Jones, N. C. EMBO J. 6, 2053–2060 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stephens, C. & Harlow, E. EMBO J. 6, 2027–2035 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Subramanian, T., Kuppuswamy, M., Nasr, Randa J. & Chinnadurai, G. Oncogene 2, 105–112 (1988).

    CAS  PubMed  Google Scholar 

  17. Ulfendahl, P. J. et al. EMBO J. 6, 2037–2044 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Whyte, P., Ruley, H. E. & Harlow, E. J. Virol. 62, 257–265 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stabel, S., Argos, P. & Philipson, L. EMBO J. 4, 2329–2336 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quinlan, M. P. & Grodzicker, T. J. Virol. 61, 673–682 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ralston, R. & Bishop, J. M. Nature 306, 803–806 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Figge, J., Webster, T., Smith, T. F. & Paucha, E. J. Virol. 62, 1814–1818 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuenzel, E., Mulligan, J. A., Sommercorn, J. & Krebs, E. G. J. biol. Chem. 262, 9136–9140 (1987).

    CAS  PubMed  Google Scholar 

  24. Sommercorn, J., Mulligan, J. A., Lozeman, F. J. & Krebs, E. G. Proc. natn. Acad. Sci. U.S.A. 84, 8834–8838 (1987).

    Article  ADS  CAS  Google Scholar 

  25. Zerler, B., Roberts, R. J., Mathews, M. B., & Moran, E. Molec. cell. Biol. 7, 821–829 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yee, S. & Branton, P. Virology 147, 142–153 (1985).

    Article  CAS  PubMed  Google Scholar 

  27. Harlow, E., Whyte, P., Robert Franza, Jr., B. & Schley, C. Molec. cell. Biol. 6, 1579–1589 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Whyte, P., Buchkovich, K. J., Horowitz, J. M., Friend, S. H., Raybuck, M., Weinberg, R. A. & Harlow, E. Nature 334, 124–129 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. DeCaprio et al. Cell (in the press).

  30. Phelps, W. C., Yee, C. L., Munger, K. & Howley, P. M. Cell 53, 539–547 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Tokunaga, O., Yaegashi, T., Lowe, J., Dobbs, L. & Padmanabhan, R. Virology 155, 418–433 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Pawlita, M., Clad, A. & zur Hausen, H. Virology 143, 196–211 (1985).

    Article  CAS  PubMed  Google Scholar 

  33. Self, I., Khoury, G. & Dhar, R. Cell 18, 963–977 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moran, E. A region of SV40 large T antigen can substitute for a transforming domain of the adenovirus E1A products. Nature 334, 168–170 (1988). https://doi.org/10.1038/334168a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334168a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing