Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly fractionated rare-earth elements in ferromagnesian chondrules from the Felix (CO3) meteorite

Abstract

Chondrules and Ca, Al-rich inclusions (CAIs) are important constituents of chondritic meteorites which preserve a record of chemical fractionation at high temperature in the early solar nebula1. Cosmochemical research on these components of meteorites shows that chondrules were formed by melting of preexisting solid precursor materials2–4. Although highly fractionated rare-earth element (REE) patterns have been known for CAIs5,6 and are considered as evidence for high-temperature fractionation in the nebula7,8, little is known about refractory precursor components of chondrules. In addition, chondrules so far studied rarely exhibit fractionated REE patterns, except in a few cases9,10, so that no single variety of refractory precursor component can be invoked as the fractionated REE carrier in chondrules. Here we describe two ferromagnesian chondrules from the Felix (Ornans-subtype) carbonaceous chondrite which carry a marker signature of REE fractionation in the nebula. Both show positive Ce and Yb anomalies and one exhibits a light/heavy REE fractionation similar to those of Group II CAI6. On the basis of the REE characteristics of these chondrules, as well as those of Allende (CV) (ref. 11), we suggest that one of the precursor materials of chondrules in CO–CV carbonaceous chondrites is a high-temperature condensate from the nebular gas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wood, J. A. A. Rev. Earth planet. Sci. 16, 53–72 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Nagahara, H. Nature 292, 135–136 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Rambaldi, E. R. Nature 293, 558–561 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Gooding, J. L., Keil, K., Fukuoka, J. & Schmitt, R. A. Earth planet. Sci. Lett. 50, 171–180 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Tanaka, T. & Masuda, A. Icarus 19, 523–530 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Martin, P. M. & Mason, B. Nature 249, 333–334 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Boynton, W. V. Geochim. cosmochim. Acta 39, 569–584 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Davis, A. M. & Grossman, L. Geochim. cosmochim. Acta 43, 1611–1632 (1976).

    Article  ADS  Google Scholar 

  9. Bischoff, A., Spettel, B. & Palme, H. Meteoritics 20, 609–610 (1985).

    Google Scholar 

  10. Rubin, A. E. & Wasson, J. T. Geochim. cosmochim. Acta 51, 1923–1937 (1987).

    Article  ADS  CAS  Google Scholar 

  11. Misawa, K. & Nakamura, N. Geochim. cosmochim. Acta (in the press).

  12. Nakamura, N. Geochim. cosmochim. Acta 38, 757–775 (1974).

    Article  ADS  CAS  Google Scholar 

  13. McSween, H. Y. Jr Geochim. cosmochim. Acta 41, 1843–1860 (1977).

    Article  ADS  CAS  Google Scholar 

  14. McSween, H. Y. Jr, Fronabarger, A. K. & Driese, S. G. in Chondrules and their Origins (ed. King, E. A.) 195–210 (Lunar Planetary Institute, Houston, Texas, 1983).

    Google Scholar 

  15. Wark, D. A. Geochim. cosmochim. Acta 51, 221–242 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Gooding, J. L. & Keil, K. Meteoritics 16, 17–43 (1981).

    Article  ADS  CAS  Google Scholar 

  17. Mason, B. & Martin, P. M. Smithson Contr. Earth Sci. 19, 83–95 (1977).

    ADS  CAS  Google Scholar 

  18. Mason, B. & Taylor, S. R. Smithson Contr. Earth Sci. 25, 1–30 (1982).

    Google Scholar 

  19. Iretand, T., Fahey, A., McKeegan, K. & Zinner, E. Meteoritics 21, 404–405 (1986).

    ADS  Google Scholar 

  20. Liu, Y.G., Rajan, R. S. & Schmitt, R. S. Lunar planet. Sci. XVIII, 562–563 (1987).

    ADS  Google Scholar 

  21. Niederer, F. R. & Papanastassiou, D. A. Geochim. cosmochim. Acta 48, 1279–1293 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Kornacki, A. S. & Fegley, B. Jr Proc. Lunar planet. Sci. Conf. 14, B588–B596 (1984).

    ADS  Google Scholar 

  23. Boynton, W. V. & Cunningham, C. C. Lunar planet. Sci. XI, 106–108 (1981).

  24. Davis, A. M., Tanaka, T., Grossman, L., Lee, T. & Wasserburg, G. J. Geochim. cosmochim. Acta 46, 1627–1651 (1982).

    Article  ADS  CAS  Google Scholar 

  25. Kornacki, A. S. & Fegley, B. Jr Earth planet. Sci. Lett. 79, 217–234 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Wood, J. A. Earth planet. Sci. Lett. 56, 32–44 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Bence, A. E. & Albee, A. L. J. geol. 76, 382–404 (1968).

    Article  ADS  CAS  Google Scholar 

  28. Ikeda, Y. Mem. Nat. Inst. Polar. Res. Spec. Issue 17, 50–82 (1980).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misawa, K., Nakamura, N. Highly fractionated rare-earth elements in ferromagnesian chondrules from the Felix (CO3) meteorite. Nature 334, 47–50 (1988). https://doi.org/10.1038/334047a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334047a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing