Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of surface speciation in the low-temperature dissolution of minerals

Abstract

Surface species control the mechanism and rate of low-temperature silicate dissolution and precipitation reactions in dilute solutions. This has been repeatedly emphasized1–;7. The interaction between dissolved species and silicate surfaces involves exchange and adsorption phenomena, which equilibrate rapidly, and are accessible to determination by surface titration8,9. Here we report a comparison of surface species concentrations with the dissolution rates of olivine and albite which indicates that while the dissolution rates are a complex function of solution pH, the dissolution rates have a simple first-order dependence on surface concentrations of specific surface species. Thus, the interpretation of the kinetic data for olivine and albite dissolution becomes simple when the chemical speciation at the mineral surface is incorporated, and this approach holds great promise for unifying the rate data for many important silicates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Stumm, W., Furrer, G., Wieland, E. & Zinder, B. in The Chemistry of Weathering (ed. Drever, J. I.) 55–74 (Reidel, Dordrecht, 1985).

    Book  Google Scholar 

  2. Helgeson, H. C., Murphy, W. M. & Aagard, P. Geochim. cosmochim. Acta 48, 2405–2432 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Lasaga, A. C. in Kinetics of Geochemical Processes (eds Lasaga, A. C. & Kirkpatrick, R. J.) 35–48 (Mineral. Soc. Am., Washington DC, 1981).

    Book  Google Scholar 

  4. Rimstidt, J. D. & Dove, P. M. Geochim. cosmochim. Acta 50, 2509–2516 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Chou, L. & Wollast, R. Am. J. Sci. 285, 963–993 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Holdren, G. R. & Speyer, P. M. Am. J. Sci. 285, 994–1026 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Tole, M. P., Lasaga, A. C., Pantano, C. & White, W. B. Geochim. cosmochim. Acta 50, 379–392 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Stumm, W. & Morgan, J. J. Aquatic Chemistry (Wiley, New York, 1981).

    Google Scholar 

  9. Haung, C. P. in Adsorption of Inorganics at Solid - Liquid Interfaces (eds Anderson, M. A. & Rubin, A. J.) 183–218 (Ann Arbor Sci., Ann Arbor, Michigan, 1981).

    Google Scholar 

  10. Berner, R. A. & Holdren, G. R. Geochim. cosmochim. Acta 43, 1173–1186 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Chou, L. & Wollast, R. Geochim. cosmochim. Acta 48, 2205–2217v (1984).

    Article  ADS  CAS  Google Scholar 

  12. Chou, L. & Wollast, R. in The Chemistry of Weathering (ed. Drever, J. I.) 75–96 (Reidel, Dordrecht, 1985).

    Google Scholar 

  13. Holdren, G. R. & Speyer, P. M. Geochim. cosmochim. Acta 49, 675–681 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Grandstaff, D. E. Geochim. cosmochim. Acta 42, 1899–1901 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Grandstaff, D. E. in Rates of Chemical Weathering (eds Colman, S. M. & Dethier, D.) 41–59 (Academic, New York, 1986).

    Google Scholar 

  16. Lasaga, A. C. J. geophys. Res. 89, 4009–4025 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Helgeson H. C. Nature 325, 667 (1987).

    Article  ADS  Google Scholar 

  18. Petrovic, R., Berner, R. A. & Goldhaber, M. B. Geochim. cosmochim. Acta 40, 537–548 (1976).

    Article  ADS  CAS  Google Scholar 

  19. Fung, P. C., Bird, G. W., Mclntyre, G. G., Sanipelli, G. G. & Lopata, V. J. Nucl. Tech. 51, 188–196 (1980).

    Article  CAS  Google Scholar 

  20. Schott, J. & Berner, R. A. Geochim. cosmochim. Acta 47, 2233–2240 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Hochella, M. F., Ponader, H. B., Turner, A. M. & Harris, D. W. Geochim. cosmochim. Acta (in the press).

  22. Petit, J., Mea, G. D., Dran, J., Schott, S. & Berner, R. A. Nature 325, 705–707 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Helgeson, H. C. Geochim. cosmochim Acta 35, 421–469 (1971).

    Article  ADS  CAS  Google Scholar 

  24. Helgeson, H. C. Geochim. cosmochim. Acta 36, 1067–1070 (1972).

    Article  ADS  CAS  Google Scholar 

  25. Furrer, G. & Stumm, W. Geochim. cosmochim. Acta 50, 1847–1860 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, A., Lasaga, A. Role of surface speciation in the low-temperature dissolution of minerals. Nature 331, 431–433 (1988). https://doi.org/10.1038/331431a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331431a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing