Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for ≥C3 alkyl nitrates in rural and remote atmospheres

Abstract

Interactions of odd-nitrogen compounds with non-methane hydro-carbons and a variety of radical species have been shown to have a potential impact on atmospheric chemistry on local, regional, and even global scales1–9. To understand the interactions of atmospheric nitrogen compounds requires an accurate budget of individual reactive nitrogen species. But recent attempts to obtain a mass balance between total reactive nitrogen (NOy) and individual reactive nitrogen species (NO-I-NO2+HNO3+PAN (peroxyacetyl nitrate) +PPN (peroxypropionyl nitrate) + particulate NO3) have not accounted for all NO9,10y. One class of compound proposed to account for some of the NOy deficit is the alkyl nitrates (RONO2)5,10–12, although ambient measurements have not been available to test this hypothesis. Here I report measurements of RONO2 made in the North Pacific atmosphere, providing the first direct evidence for existence and transport of ≥C3 alkyl nitrates in the troposphere. I also observed a variation in alkyl nitrate concentration which suggests these compounds may be used as unique tracers of 'polluted' air masses to remote areas. These observations are significant because relatively long-lived alkyl nitrates can serve as reservoirs of reactive nitrogen in the remote troposphere, where they can be converted to NOx, a key catalyst in ozone formation and destruction3,4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Altshulller, A. P. Atmos. Environ. 20, 245–268 (1986).

    Article  ADS  Google Scholar 

  2. Crutzen, P. J. A. Rev. Earth planet. Sci. 443–472 (1979).

  3. Crutzen, P. J. Pure appl. Geophys. 106–108, 1385–1399 (1973).

    Article  Google Scholar 

  4. Chameides, W. & Walker, J. C. G. J. geophys. Res. 78, 8751–8760 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Dickerson, R. R. J. geophys. Res. 90, 10,739–10,743 (1985).

    Article  ADS  Google Scholar 

  6. Kasting, J. F. & Singh, H. B. J. geophys. Res. 91, 13,239–13,256 (1986).

    Article  ADS  Google Scholar 

  7. Logan, J. A. J. geophys. Res. 88, 10,785–10,807 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Logan, J. A., Prather, M. J., Wofsy, S. C. & McElroy, M. B. J. geophys. Res. 86, 7210–7245 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Singh, H. B. Environ. Sci. Technol. 21, 320–327 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Fahey, D. W. et al. J. geophys. Res. 91, 9781–9793 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Calvert, J. & Madronich, S. J. geophys. Res. 92, 2211–2220 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Grosjean, D. Environ. Sci. Technol. 17, 13–17 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Dickerson, R. R. Atmos. Environ. 18, 2585–2593 (1984).

    Article  ADS  Google Scholar 

  14. Hayes, R. N., Sneldon, J. C., Bowie, J. H. & Lewis, D. E. Aust. J. Chem. 38, 1197–1208 (1985).

    Article  CAS  Google Scholar 

  15. Noest, A. J. & Nibbering, N. M. M. Adv. Mass. Spectrom. 8A, 227–237 (1979).

    Google Scholar 

  16. Atkinson, R. A. & Lloyd, A. C. J. phys. Chem. Ref. Data 13, 315–444 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Pitts, J. M. Jr J. phys. Chem. 80, 1948–1950 (1976).

    Article  Google Scholar 

  18. Atkinson, R., Aschmann, S. M., Carter, W. P. L., Winer, A. M. & Pittts, J. N. Jr Int. J. chem. Kinet. 14, 781–788 (1982).

    Article  CAS  Google Scholar 

  19. Singh, H. B. & Salas, L. J. Nature 302, 326–328 (1983).

    Article  ADS  CAS  Google Scholar 

  20. Noxon, J. F. J. geophys. Res. 88, 11,017–11,021 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Merrill, J. T. Searex Newsl. 10, 2–6 (1987).

    Google Scholar 

  22. Uematsu, M. & Duce, R. A. Maritimes 30(3), 1–4 (1986).

    Google Scholar 

  23. Ridley, B. A., Carroll, M. A. & Gregory, G. L. J. geophys. Res. 92, 2025–2047 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Rudolph, J. & Khedim, A. Int. J. environ. analyt. Chem. 20, 265–282 (1985).

    Article  CAS  Google Scholar 

  25. Carter, W. P. L., Lloyd, A. C., Sprung, J. L. & Pitts, J. N. Jr Int. J. chem. Kinet. 11, 45–101 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atlas, E. Evidence for ≥C3 alkyl nitrates in rural and remote atmospheres. Nature 331, 426–428 (1988). https://doi.org/10.1038/331426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331426a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing