Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Segregation of functionally distinct axons in the monkey's optic tract

Abstract

The classical neuro-ophthalmologic literature describes the organization of the primate's optic tract as containing a single topographic representation of the complete contralateral visual hemifield1–4. In contrast, cats have separate visual field representations for the optic axons of the functionally distinct retinal ganglion cell classes5,6. As the line of decussation for each ganglion cell class in the cat occupies a different location on the retinal surface7–11, whereas in primates they are all superimposed12, such a species difference might be expected. We report that implants of horseradish peroxidase placed in either the deep or superficial extremes of the monkey's optic tract produce retrograde labelling of distinct retinal ganglion cell classes, and produce anterograde labelling confined to distinct laminae of the lateral geniculate nucleus. Hence,the optic tract of the primate cannot contain a single representation of the contralateral visual hemifield; rather, independent visual field representations for the functionally distinct optic axons must exist. Their anatomical segregation may account for the clinical observation of selective impairments of distinct visual abilities following partial interruption of the optic tract in man13.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Polyak, S. L. The Vertebrate Visual System (University of Chicago Press, Chicago, 1957).

    Google Scholar 

  2. Duke-Elder, S. System of Ophthalmology, Vol. II (Klimpton, London, 1961).

    Google Scholar 

  3. Hoyt, W. F. & Luis, O. Arch. Ophthal. 68, 124–136 (1962).

    Google Scholar 

  4. Hoyt, W. F. & Luis, O. Arch. Ophthal. 70, 113–129 (1963).

    Google Scholar 

  5. Guillery, R. W., Polley, E. H. & Torrealba, F. J. Neurosci. 2, 714–721 (1982).

    Article  CAS  Google Scholar 

  6. Torrealba, F., Guillery, R. W., Eysel, U., Policy, E. H. & Mason, C. A. J. comp. Neurol. 211, 377–396 (1983).

    Article  Google Scholar 

  7. Stone, J. & Fukuda, Y. J. comp. Neurol. 155, 377–394 (1974).

    Article  CAS  Google Scholar 

  8. Kirk, D. L., Levick, W. R., Cleland, B. G. & Wässle, H. Vision Res. 16, 225–231 (1976).

    Article  CAS  Google Scholar 

  9. Kirk, D. L., Levick, W. R. & Cleland, B. G. Vision Res. 16, 233–236 (1976).

    Article  CAS  Google Scholar 

  10. Wässle, H. & Illing, R.-B. J. comp. Neurol. 190, 333–356 (1980).

    Article  Google Scholar 

  11. Illing, R.-B. & Wässle, H. J. comp. Neurol. 202, 265–285 (1981).

    Article  CAS  Google Scholar 

  12. Bunt, A. H., Minckler, D. S. & Johanson, G. W. J. comp. Neurol. 171, 619–630 (1977).

    Article  CAS  Google Scholar 

  13. Bender, M. B. & Bodis-Wollner, I. A. Neurol. 3, 187–193 (1978).

    Article  CAS  Google Scholar 

  14. Leventhal, A. G., Rodieck, R. W. & Dreher, B. Science 213, 1139–1142 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Perry, V. H. & Cowey, A. Expl Brain Res. 43, 226–228 (1981).

    Article  CAS  Google Scholar 

  16. Perry, V. H., Oehler, R. & Cowey, A. Neuroscience 12, 1101–1123 (1984).

    Article  CAS  Google Scholar 

  17. Rodieck, R. W., Binmoeller, K. F. & Dineen, J. J. comp. Neurol. 233, 115–132 (1985).

    Article  CAS  Google Scholar 

  18. Perry, V. H. & Cowey, A. Neuroscience 12, 1125–1137 (1984).

    Article  CAS  Google Scholar 

  19. Reese, B. E. & Guillery, R. W. J. comp. Neurol. 260, 453–459 (1987).

    Article  CAS  Google Scholar 

  20. deMonasterio, F. M. J. Neurophysiol. 41, 1394–1417 (1978).

    Article  CAS  Google Scholar 

  21. deMonasterio, F. M. J. Neurophysiol. 41, 1418–1434 (1978).

    Article  CAS  Google Scholar 

  22. Kaplan, E. & Shapley, R. M. Proc. natn. Acad. Sci. U.S.A. 83, 2755–2757 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Schiller, P. H. & Malpeli, J. G. J. Neurophysiol. 40, 428–445 (1977).

    Article  CAS  Google Scholar 

  24. Schiller, P. H. & Malpeli, J. G. J. Neurophysiol. 41, 788–797 (1978).

    Article  CAS  Google Scholar 

  25. Walsh, C. & Guillery, R. W. J. Neurosci. 5, 3061–3069 (1985).

    Article  CAS  Google Scholar 

  26. Walsh, C. & Polley, E. H. J. Neurosci. 5, 741–750 (1985).

    Article  CAS  Google Scholar 

  27. Walsh, C., Polley, E. H., Hickey, T. L. & Guillery, R. W. Nature 302, 611–614 (1983).

    Article  ADS  CAS  Google Scholar 

  28. Hanker, J. S., Yates, P. E., Meltz, C. B. & Rustioni, A. J. Histochem. J. 9, 789–792 (1977).

    Article  CAS  Google Scholar 

  29. Perry, V. H. & Linden, R. Nature 297, 683–685 (1982).

    Article  ADS  CAS  Google Scholar 

  30. Mesulam, M.-M. J. Histochem. Cytochem. 26, 106–116 (1978).

    Article  CAS  Google Scholar 

  31. Olucha, F., Martinez-Garcia, F. & Lopez-Garcia, C. J Neurosci. Meth. 13, 131–138 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reese, B., Cowey, A. Segregation of functionally distinct axons in the monkey's optic tract. Nature 331, 350–351 (1988). https://doi.org/10.1038/331350a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/331350a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing