Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immune response to lentiviral bilirubin UDP-glucuronosyltransferase gene transfer in fetal and neonatal rats

Abstract

Gene therapy for inherited disorders might cause an immune response to the therapeutic protein. A solution would be to introduce the gene in the fetal or neonatal period, which should lead to tolerization. Lentiviral vectors mediate long-term gene expression, and are well suited for gene therapy early in development. A model for fetal or neonatal gene therapy is the inherited disorder of bilirubin metabolism, Crigler–Najjar disease (CN). The absence of bilirubin UDP-glucoronyltransferase (UGT1A1) activity in CN patients causes high serum levels of unconjugated bilirubin and brain damage in infancy. CN is attractive for the development of gene therapy because the mutant Gunn rat closely mimics the human disease. Injection of UGT1A1 lentiviral vectors corrected the hyperbilirubinemia for more than a year in rats injected as fetuses and for up to 18 weeks in rats injected the day of birth. UGT1A1 gene transfer was confirmed by the presence of bilirubin glucuronides in bile. All animals injected with UGT1A1 lentiviral vectors developed antibodies to UGT1A1. Animals injected with green fluorescent protein (GFP) lentiviral vectors did not develop antibodies to GFP. Our results indicate that fetal and neonatal gene therapy with immunogenic proteins such as UGT1A1 does not necessarily lead to tolerization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Nguyen TH, Ferry N . Liver gene therapy: advances and hurdles. Gene Therapy 2004; 11: S76–S84.

    Article  CAS  Google Scholar 

  2. Wang CH, Liu DW, Tsao YP, Xiao X, Chen SL . Can genes transduced by adeno-associated virus vectors elicit or evade an immune response? Arch Virol 2004; 149: 1–15.

    Article  CAS  Google Scholar 

  3. Billingham RE, Brent L, Medawar PB . Actively aquired tolerance of foreign cells. Nature 1953; 172: 603–606.

    Article  CAS  Google Scholar 

  4. Nossal GJ . Cellular mechanisms of immunologic tolerance. Annu Rev Immunol 1983; 1: 33–62.

    Article  CAS  Google Scholar 

  5. Zanjani ED, Anderson WF . Review: Medicine – Prospects for in utero human gene therapy. Science 1999; 285: 2084–2088.

    Article  CAS  Google Scholar 

  6. Coutelle C, Themis M, Waddington S, Gregory L, Nivsarkar M, Buckley S et al. The hopes and fears of in utero gene therapy for genetic disease – a review. Placenta 2003; 24: S114–S121.

    Article  Google Scholar 

  7. Waddington SN, Kramer MG, Hernandez-Alcoceba R, Buckley SM, Themis M, Coutelle C et al. In utero gene therapy: current challenges and perspectives. Mol Ther 2005; 11: 661–676.

    Article  CAS  Google Scholar 

  8. Waddington SN, Buckley SM, Nivsarkar M, Jezzard S, Schneider H, Dahse T et al. In utero gene transfer of human factor IX to fetal mice can induce postnatal tolerance of the exogenous clotting factor. Blood 2003; 101: 1359–1366.

    Article  CAS  Google Scholar 

  9. Waddington SN, Nivsarkar MS, Mistry AR, Buckley SM, Kemball-Cook G, Mosley KL et al. Permanent phenotypic correction of hemophilia B in immunocompetent mice by prenatal gene therapy. Blood 2004; 104: 2714–2721.

    Article  CAS  Google Scholar 

  10. Ostrow JD, Mukerjee P, Tiribelli C . Structure and binding of unconjugated bilirubin: relevance for physiological and pathophysiological function. J Lipid Res 1994; 35: 1715–1737.

    CAS  Google Scholar 

  11. Tukey RH, Strassburg CP . Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 2000; 40: 581–616.

    Article  CAS  Google Scholar 

  12. Jansen PL . Diagnosis and management of Crigler–Najjar syndrome. Eur J Pediatr 1999; 158 (Suppl 2): S89–S94.

    Article  Google Scholar 

  13. Ostrow JD, Pascolo L, Tiribelli C . Mechanisms of bilirubin neurotoxicity. Hepatology 2002; 35: 1277–1280.

    Article  Google Scholar 

  14. Chowdhury JR, Kondapalli R, Chowdhury NR . Gunn rat: a model for inherited deficiency of bilirubin glucuronidation. Adv Vet Sci Comp Med 1993; 37: 149–173.

    CAS  PubMed  Google Scholar 

  15. Aubert D, Menoret S, Chiari E, Pichard V, Durand S, Tesson L et al. Cytotoxic immune response blunts long-term transgene expression after efficient retroviral-mediated hepatic gene transfer in rat. Mol Ther 2002; 5: 388–396.

    Article  CAS  Google Scholar 

  16. Ailles LE, Naldini L . HIV-1-derived lentiviral vectors. Curr Top Microbiol Immunol 2002; 261: 31–52.

    CAS  Google Scholar 

  17. Galimi F, Verma IM . Opportunities for the use of lentiviral vectors in human gene therapy. Curr Top Microbiol Immunol 2002; 261: 245–254.

    CAS  PubMed  Google Scholar 

  18. Trono D . Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Therapy 2000; 7: 20–23.

    Article  CAS  Google Scholar 

  19. Seppen J, van der RR, Looije N, van Til NP, Lamers WH, Oude Elferink RP . Long-term correction of bilirubin UDPglucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther 2003; 8: 593–599.

    Article  CAS  Google Scholar 

  20. van Til NP, Markusic DM, van der Rijt R, Kunne C, Hiralall JK, Vreeling H et al. Kupffer cells and not liver sinusoidal endothelial cells prevent lentiviral transduction of hepatocytes. Mol Ther 2005; 11: 26–34.

    Article  CAS  Google Scholar 

  21. Takahashi M, Ilan Y, Chowdhury NR, Guida J, Horwitz M, Chowdhury JR . Long term correction of bilirubin-UDP-glucuronosyltransferase deficiency in Gunn rats by administration of a recombinant adenovirus during the neonatal period. J Biol Chem 1996; 271: 26536–26542.

    Article  CAS  Google Scholar 

  22. Stripecke R, Villacres MD, Skelton DC, Satake N, Halene S, Kohn DB . Immune response to green fluorescent protein: implications for gene therapy. Gene Therapy 1999; 6: 1305–1312.

    Article  CAS  Google Scholar 

  23. Inoue H, Ohsawa I, Murakami T, Kimura A, Hakamata Y, Sato Y et al. Development of new inbred transgenic strains of rats with LacZ or GFP. Biochem Biophys Res Commun 2005; 329: 288–295.

    Article  CAS  Google Scholar 

  24. Morris JC, Conerly M, Thomasson B, Storek J, Riddell SR, Kiem HP . Induction of cytotoxic T-lymphocyte responses to enhanced green and yellow fluorescent proteins after myeloablative conditioning. Blood 2004; 103: 492–499.

    Article  CAS  Google Scholar 

  25. Kimura S, Eldridge JH, Michalek SM, Morisaki I, Hamada S, McGhee JR . Immunoregulation in the rat: ontogeny of B cell responses to types 1, 2, and T-dependent antigens. J Immunol 1985; 134: 2839–2846.

    CAS  PubMed  Google Scholar 

  26. Ladics GS, Smith C, Bunn TL, Dietert RR, Anderson PK, Wiescinski CM et al. Characterization of an approach to developmental immunotoxicology assessment in the rat using SRBC as the antigen. Toxicol Methods 2000; 10: 283–311.

    Article  CAS  Google Scholar 

  27. Watts AM, Stanley JR, Shearer MH, Hefty PS, Kennedy RC . Fetal immunization of baboons induces a fetal-specific antibody response. Nat Med 1999; 5: 427–430.

    Article  CAS  Google Scholar 

  28. Marchant A, Appay V, Van Der SM, Dulphy N, Liesnard C, Kidd M et al. Mature CD8(+) T lymphocyte response to viral infection during fetal life. J Clin Invest 2003; 111: 1747–1755.

    Article  CAS  Google Scholar 

  29. Jerebtsova M, Batshaw ML, Ye X . Humoral immune response to recombinant adenovirus and adeno-associated virus after in utero administration of viral vectors in mice. Pediatr Res 2002; 52: 95–104.

    Article  CAS  Google Scholar 

  30. Manns MP, Obermayer-Straub P . Cytochromes P450 and uridine triphosphate-glucuronosyltransferases: model autoantigens to study drug-induced, virus-induced, and autoimmune liver disease. Hepatology 1997; 26: 1054–1066.

    Article  CAS  Google Scholar 

  31. Clarke DJ, Keen JN, Burchell B . Isolation and characterisation of a new hepatic bilirubin UDP-glucuronosyltransferase. Absence from Gunn rat liver. FEBS Lett 1992; 299: 183–186.

    Article  CAS  Google Scholar 

  32. Magdalou J, Antoine B, Ratanasavanh D, Siest G . Phenobarbital induction of cytochrome P-450 and UDP-glucuronosyltransferase in rabbit liver plasma membranes. Enzyme 1982; 28: 41–47.

    Article  CAS  Google Scholar 

  33. Kootstra NA, Matsumura R, Verma IM . Efficient production of human FVIII in hemophilic mice using lentiviral vectors. Mol Ther 2003; 7: 623–631.

    Article  CAS  Google Scholar 

  34. VandenDriessche T, Thorrez L, Naldini L, Follenzi A, Moons L, Berneman Z et al. Lentiviral vectors containing the human immunodeficiency virus type-1 central polypurine tract can efficiently transduce nondividing hepatocytes and antigen-presenting cells in vivo. Blood 2002; 100: 813–822.

    Article  CAS  Google Scholar 

  35. Follenzi A, Battaglia M, Lombardo A, Annoni A, Roncarolo MG, Naldini L . Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood 2004; 103: 3700–3709.

    Article  CAS  Google Scholar 

  36. Nguyen TH, Bellodi-Privato M, Aubert D, Pichard V, Myara A, Trono D et al. Therapeutic lentivius-mediated neonatal in vivo gene therapy in hyperbilirubinemic Gunn rats. Mol Ther 2005 (in press).

  37. Peters WH, Allebes WA, Jansen PL, Poels LG, Capel PJ . Characterization and tissue specificity of a monoclonal antibody against human uridine 5′-diphosphate-glucuronosyltransferase. Gastroenterology 1987; 93: 162–169.

    Article  CAS  Google Scholar 

  38. Seppen J, Tada K, Ottenhoff R, Sengupta K, Chowdhury NR, Chowdhury JR et al. Transplantation of Gunn rats with autologous fibroblasts expressing bilirubin UDP-glucuronosyltransferase: correction of genetic deficiency and tumor formation. Hum Gene Ther 1997; 8: 27–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was made possible by a grant from NWO, 016.026.012 to JS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Seppen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seppen, J., van Til, N., van der Rijt, R. et al. Immune response to lentiviral bilirubin UDP-glucuronosyltransferase gene transfer in fetal and neonatal rats. Gene Ther 13, 672–677 (2006). https://doi.org/10.1038/sj.gt.3302681

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302681

Keywords

This article is cited by

Search

Quick links