Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

RNA knockdown as a potential therapeutic strategy in Parkinson's disease

Abstract

Parkinson's disease is a prevalent progressive degenerative disorder of the elderly. There is a current need for novel therapeutic strategies because the standard levodopa pharmacotherapy is only temporarily efficacious. Recently, there have been some high-profile successful preclinical results obtained in animal models of neurological disorders using small interfering RNAs delivered by viral vectors. RNA interference can theoretically be applied to Parkinson's disease since over-expression of various proteins is known to kill the dopamine neurons of the substantia nigra in animal models and in familial forms of Parkinson's disease. Potential RNA interfering strategies and caveats are discussed in this review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1

Similar content being viewed by others

References

  1. Ketting RF, Haverkamp TH, van Luenen HG, Plasterk RH . Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 1999; 99: 133–141.

    Article  CAS  Google Scholar 

  2. Meister G, Tuschl T . Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431: 343–349.

    Article  CAS  Google Scholar 

  3. Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS . Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 2005; 15: 331–341.

    Article  CAS  Google Scholar 

  4. Tomari Y, Zamore PD . Perspective: machines for RNAi. Genes Dev 2005; 19: 517–529.

    Article  CAS  Google Scholar 

  5. Jin P, Alisch RS, Warren ST . RNA and microRNAs in fragile X mental retardation. Nat Cell Biol 2004; 6: 1048–1053.

    Article  CAS  Google Scholar 

  6. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A . Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22: 326–330.

    Article  CAS  Google Scholar 

  7. Schwarz DS, Hutvagner G, Du T, Xu Z, Aronin N, Zamore PD . Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199–208.

    Article  CAS  Google Scholar 

  8. Khvorova A, Reynolds A, Jayasena SD . Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115: 209–216.

    Article  CAS  Google Scholar 

  9. Dorsett Y, Tuschl T . siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 2004; 3: 318–329.

    CAS  Google Scholar 

  10. Akashi H, Matsumoto S, Taira K . Gene discovery by ribozyme and siRNA libraries. Nat Rev Mol Cell Biol 2005; 6: 413–422.

    Article  CAS  Google Scholar 

  11. Luo B, Heard AD, Lodish HF . Small interfering RNA production by enzymatic engineering of DNA (SPEED). Proc Natl Acad Sci USA 2004; 101: 5494–5499.

    Article  CAS  Google Scholar 

  12. Sen G, Wehrman TS, Myers JW, Blau HM . Restriction enzyme-generated siRNA (REGS) vectors and libraries. Nat Genet 2004; 36: 183–189.

    Article  CAS  Google Scholar 

  13. Seyhan AA, Vlassov AV, Ilves H, Egry L, Kaspar RL, Kazakov SA et al. Complete, gene-specific siRNA libraries: production and expression in mammalian cells. RNA 2005; 11: 837–846.

    Article  CAS  Google Scholar 

  14. Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 2003; 31: 2705–2716.

    Article  CAS  Google Scholar 

  15. Hamada M, Ohtsuka T, Kawaida R, Koizumi M, Morita K, Furukawa H et al. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′-ends of siRNAs. Antisense Nucleic Acid Drug Dev 2002; 12: 301–309.

    Article  CAS  Google Scholar 

  16. Prakash TP, Allerson CR, Dande P, Vickers TA, Sioufi N, Jarres R et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J Med Chem 2005; 48: 4247–4253.

    Article  CAS  Google Scholar 

  17. Zhou H, Xia XG, Xu Z . An RNA polymerase II construct synthesizes short-hairpin RNA with a quantitative indicator and mediates highly efficient RNAi. Nucleic Acids Res 2005; 33: e62.

    Article  Google Scholar 

  18. Boden D, Pusch O, Silbermann R, Lee F, Tucker L, Ramratnam B . Enhanced gene silencing of HIV-1 specific siRNA using microRNA designed hairpins. Nucleic Acids Res 2004; 32: 1154–1158.

    Article  CAS  Google Scholar 

  19. Pardridge WM . Intravenous, non-viral RNAi gene therapy of brain cancer. Expert Opin Biol Ther 2004; 4: 1103–1113.

    Article  CAS  Google Scholar 

  20. Akaneya Y, Jiang B, Tsumoto T . RNAi-induced gene silencing by local electroporation in targeting brain region. J Neurophysiol 2005; 93: 594–602.

    Article  CAS  Google Scholar 

  21. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc Natl Acad Sci USA 2005; 102: 5820–5825.

    Article  CAS  Google Scholar 

  22. Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ . Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington's disease transgenic mice. Mol Ther 2005; 12: 618–633.

    Article  CAS  Google Scholar 

  23. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004; 10: 816–820.

    Article  CAS  Google Scholar 

  24. Bjorklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ . Towards a neuroprotective gene therapy for Parkinson's disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 2000; 886: 82–98.

    Article  CAS  Google Scholar 

  25. Mandel RJ, Burger C . Clinical trials in neurological disorders using AAV vectors: promises and challenges. Curr Opin Mol Ther 2004; 6: 482–490.

    CAS  PubMed  Google Scholar 

  26. Blacklow NR, Hoggan MD, Sereno MS, Brandt CD, Kim HW, Parrott RH et al. A seroepidemiologic study of adenovirus-associated virus infection in infants and children. Am J Epidemiol 1971; 94: 359–366.

    Article  CAS  Google Scholar 

  27. Erles K, Sebokova P, Schlehofer JR . Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol 1999; 59: 406–411.

    Article  CAS  Google Scholar 

  28. Peden CS, Burger C, Muzyczka N, Mandel RJ . Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 2004; 78: 6344–6359.

    Article  CAS  Google Scholar 

  29. Burger C, Gorbatyuk OS, Velardo MJ, Peden CS, Williams P, Zolotukhin S et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 2004; 10: 302–317.

    Article  CAS  Google Scholar 

  30. Mandel RJ, Spratt SK, Snyder RO, Leff SE . Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson's disease in rats. Proc Natl Acad Sci USA 1997; 94: 14083–14088.

    Article  CAS  Google Scholar 

  31. Klein RL, Meyer EM, Peel AL, Zolotukhin S, Meyers C, Muzyczka N et al. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 1998; 150: 183–194.

    Article  CAS  Google Scholar 

  32. Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci USA 2003; 100: 7195–7200.

    Article  CAS  Google Scholar 

  33. Venkatraman P, Wetzel R, Tanaka M, Nukina N, Goldberg AL . Eukaryotic proteasomes cannot digest polyglutamine sequences and release them during degradation of polyglutamine-containing proteins. Mol Cell 2004; 14: 95–104.

    Article  CAS  Google Scholar 

  34. Bruijn LI, Houseweart MK, Kato S, Anderson KL, Anderson SD, Ohama E et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 1998; 281: 1851–1854.

    Article  CAS  Google Scholar 

  35. Kabashi E, Agar JN, Taylor DM, Minotti S, Durham HD . Focal dysfunction of the proteasome: a pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J Neurochem 2004; 89: 1325–1335.

    Article  CAS  Google Scholar 

  36. Xie J, Awad KS, Guo Q . RNAi knockdown of Par-4 inhibits neurosynaptic degeneration in ALS-linked mice. J Neurochem 2005; 92: 59–71.

    Article  CAS  Google Scholar 

  37. Daude N, Marella M, Chabry J . Specific inhibition of pathological prion protein accumulation by small interfering RNAs. J Cell Sci 2003; 116: 2775–2779.

    Article  CAS  Google Scholar 

  38. Klockgether T . Parkinson's disease: clinical aspects. Cell Tissue Res 2004; 318: 115–120.

    Article  Google Scholar 

  39. Nutt JG . Clinical pharmacology of levodopa-induced dyskinesia. Ann Neurol 2000; 47: S160–S164; discussion S164–S166.

    CAS  PubMed  Google Scholar 

  40. Nutt JG . Motor fluctuations and dyskinesia in Parkinson's disease. Parkinsonism Relat Disord 2001; 8: 101–108.

    Article  CAS  Google Scholar 

  41. Dunnett SB, Bjorklund A, Lindvall O . Cell therapy in Parkinson's disease – stop or go? Nat Rev Neurosci 2001; 2: 365–369.

    Article  CAS  Google Scholar 

  42. Lozano AM, Mahant N . Deep brain stimulation surgery for Parkinson's disease: mechanisms and consequences. Parkinsonism Relat Disord 2004; 10 (Suppl 1): S49–S57.

    Article  Google Scholar 

  43. Eriksen JL, Wszolek Z, Petrucelli L . Molecular pathogenesis of Parkinson disease. Arch Neurol 2005; 62: 353–357.

    Article  Google Scholar 

  44. Tanner CM, Langston JW . Do environmental toxins cause Parkinson's disease? A critical review. Neurology 1990; 40 (Suppl): 17–30; discussion 30–31.

    Google Scholar 

  45. Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R et al. Parkinson disease in twins: an etiologic study. JAMA 1999; 281: 341–346.

    Article  CAS  Google Scholar 

  46. Greenamyre JT, Hastings TG . Biomedicine. Parkinson's – divergent causes, convergent mechanisms. Science 2004; 304: 1120–1122.

    Article  CAS  Google Scholar 

  47. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997; 276: 2045–2047.

    Article  CAS  Google Scholar 

  48. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al. Alpha-Synuclein locus triplication causes Parkinson's disease. Science 2003; 302: 841.

    Article  CAS  Google Scholar 

  49. Cookson MR . The Biochemistry of Parkinson's Disease. Annu Rev Biochem 2004; 74: 29–52.

    Article  Google Scholar 

  50. Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL . Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology 2004; 25: 761–769.

    Article  CAS  Google Scholar 

  51. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392: 605–608.

    Article  CAS  Google Scholar 

  52. West A, Periquet M, Lincoln S, Lucking CB, Nicholl D, Bonifati V et al. Complex relationship between Parkin mutations and Parkinson disease. Am J Med Genet 2002; 114: 584–591.

    Article  Google Scholar 

  53. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25: 302–305.

    Article  CAS  Google Scholar 

  54. Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A . Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 2003; 37: 735–749.

    Article  CAS  Google Scholar 

  55. Yang Y, Nishimura I, Imai Y, Takahashi R, Lu B . Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron 2003; 37: 911–924.

    Article  CAS  Google Scholar 

  56. Perez FA, Palmiter RD . Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci USA 2005; 102: 2174–2179.

    Article  CAS  Google Scholar 

  57. Liu DX, Greene LA . Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell Tissue Res 2001; 305: 217–228.

    Article  CAS  Google Scholar 

  58. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003; 299: 256–259.

    Article  CAS  Google Scholar 

  59. Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H . DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 2004; 5: 213–218.

    Article  CAS  Google Scholar 

  60. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004; 304: 1158–1160.

    Article  CAS  Google Scholar 

  61. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E et al. The ubiquitin pathway in Parkinson's disease. Nature 1998; 395: 451–452.

    Article  CAS  Google Scholar 

  62. Alberi L, Sgado P, Simon HH . Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 2004; 131: 3229–3236.

    Article  CAS  Google Scholar 

  63. Bantounas I, Glover CP, Kelly S, Iseki S, Phylactou LA, Uney JB . Assessing adenoviral hammerhead ribozyme and small hairpin RNA cassettes in neurons: inhibition of endogenous caspase-3 activity and protection from apoptotic cell death. J Neurosci Res 2005; 79: 661–669.

    Article  CAS  Google Scholar 

  64. Lingor P, Koeberle P, Kugler S, Bahr M . Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain 2005; 128: 550–558.

    Article  Google Scholar 

  65. Ji J, Wernli M, Mielgo A, Buechner SA, Erb P . Fas-ligand gene silencing in basal cell carcinoma tissue with small interfering RNA. Gene Therapy 2005; 12: 678–684.

    Article  CAS  Google Scholar 

  66. Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, Muzyczka N et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 2002; 22: 2780–2791.

    Article  CAS  Google Scholar 

  67. Kirik D, Annett LE, Burger C, Muzyczka N, Mandel RJ, Bjorklund A . Nigrostriatal alpha-synucleinopathy induced by viral vector-mediated overexpression of human alpha-synuclein: a new primate model of Parkinson's disease. Proc Natl Acad Sci USA 2003; 100: 2884–2889.

    Article  CAS  Google Scholar 

  68. Hommel JD, Sears RM, Georgescu D, Simmons DL, DiLeone RJ . Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 2003; 9: 1539–1544.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Fast-track grant from the Michael J Fox Foundation to RJM and ASL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Mandel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manfredsson, F., Lewin, A. & Mandel, R. RNA knockdown as a potential therapeutic strategy in Parkinson's disease. Gene Ther 13, 517–524 (2006). https://doi.org/10.1038/sj.gt.3302669

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302669

Keywords

This article is cited by

Search

Quick links