Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

HSV-1 amplicon vector-mediated expression of ATM cDNA and correction of the ataxia–telangiectasia cellular phenotype

Abstract

Ataxia–telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunodeficiency, cancer predisposition, genome instability, and radiation sensitivity. Previous research has shown that it is possible to correct the hereditary deficiency A-T by DNA transfection in cell culture, but the large size of the ATM cDNA (9 kb) limits the use of many vector types for gene replacement. HSV-1 amplicon vectors provide a means to deliver large genes to cells efficiently and without toxicity. In this study, the FLAG-tagged cDNA for human ATM was inserted into an HSV-1 amplicon under control of the CMV promoter (designated as HGC-ATM). FLAG-ATM expression was confirmed in 293T/17 cells and human A-T fibroblasts (GM9607) after transduction, by immunoprecipitation, Western analysis, and immunocytochemistry. Functional recovery was assessed by two independent assays. First, in vitro kinase assay showed that vector-derived ATM in GM9607 cells could successfully phosphorylate wt p53 using recombinant GST-p531–101. Second, in A-T cells infected with the HGC-ATM vector, the extent of accumulation in G2/M phase at 24 h postirradiation was similar to that observed in cells with wild-type endogenous ATM and lower than that observed in A-T cells infected with a control vector. Thus, these vectors provide a tool to test the feasibility of HSV-amplicons as gene therapy vectors for A-T.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Lavin MF, Shiloh Y . The genetic defect in ataxia–telangiectasia. Annu Rev Immunol 1997; 15: 177–202.

    Article  CAS  PubMed  Google Scholar 

  2. Meyn MS . Ataxia–telangiectasia, cancer and pathobiology of the ATM gene. Clin Genet 1999; 55: 289–304.

    Article  CAS  PubMed  Google Scholar 

  3. Easton DF . Cancer risks in A-T heterozygotes. Int J Radiat Biol 1994; 66: S177–S182.

    Article  CAS  PubMed  Google Scholar 

  4. Khanna KK, Lavin MF, Jackson SP, Mulhern TD . ATM, a central controller of cellular responses to DNA damage. Cell Death Differ 2001; 8: 1052–1065.

    Article  CAS  PubMed  Google Scholar 

  5. Kastan MB, Lim D . The many substrates and functions of ATM. Mol Cell Biol 2000; 1: 179–185.

    CAS  Google Scholar 

  6. Savitsky K et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 1995; 268: 1749–1753.

    Article  CAS  PubMed  Google Scholar 

  7. Rotman G, Shiloh Y . ATM: from gene to function. Hum Mol Genet 1998; 7: 1555–1563.

    Article  CAS  PubMed  Google Scholar 

  8. Rotman G, Shiloh Y . ATM, a mediator of multiple responses to genotoxic stress. Oncogene 1999; 18: 6135–6144.

    Article  CAS  PubMed  Google Scholar 

  9. Beamish H, Williams R, Chen P, Lavin M . Defect in multiple cell cycle checkpoints in ataxia–telangiectasia postirradiation. J Biol Chem 1996; 271: 20486–20493.

    Article  CAS  PubMed  Google Scholar 

  10. Xu B, Kim ST, Lim DS, Kastan MB . Two distinct G2/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 2002; 22: 1049–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Canman CE et al. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 1998; 281: 1677–1679.

    Article  CAS  PubMed  Google Scholar 

  12. Siliciano JD et al. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 1997; 11: 3471–3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jack MT et al. Chk2 is dispensable for p53-mediated G1 arrest but is required for a latent p53-mediated apoptotic response. Proc Natl Acad Sci USA 2002; 99: 9825–9829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lim DS et al. ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 2000; 404: 613–617.

    Article  CAS  PubMed  Google Scholar 

  15. Xu B, O'Donnell AH, Kim ST, Kastan MB . Phosphorylation of serine 1387 in Brca1 is specifically required for the Atm-mediated S-phase checkpoint after ionizing irradiation. Cancer Res 2002; 62: 4588–4591.

    CAS  PubMed  Google Scholar 

  16. Kim ST, Xu B, Kastan MB . Involvement of the cohesin protein, Smc1, in Atm-dependent and independent responses to DNA damage. Genes Dev 2002; 16: 560–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taniguchi T et al. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 2002; 109: 459–472.

    Article  CAS  PubMed  Google Scholar 

  18. Xu B, Kim ST, Kastan MB . Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001; 21: 3445–3450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bao S et al. ATR/ATM-mediated phosphorylation of human Rad17 is required for genotoxic stress responses. Nature 2001; 411: 969–974.

    Article  CAS  PubMed  Google Scholar 

  20. Ziv Y et al. Recombinant ATM protein complements the cellular A-T phenotype. Oncogene 1997; 15: 159–167.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang N et al. Isolation of full-length ATM cDNA and correction of the ataxia–telangiectasia cellular phenotype. Proc Natl Acad Sci USA 1997; 94: 8021–8026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Uhrhammer N, Fritz E, Boyden L, Meyn MS . Human fibroblasts transfected with an ATM antisense vector respond abnormally to ionizing radiation. Int J Mol Med 1999; 4: 43–47.

    CAS  PubMed  Google Scholar 

  23. Spaete R, Frenkel N . The herpes virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 1982; 30: 295–304.

    Article  CAS  PubMed  Google Scholar 

  24. Geller AI, Breakefield XO . A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 1988; 241: 1667–1669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fraefel C et al. Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J Virol 1996; 70: 7190–7197.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Costantini LC et al. Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno-associated virus amplicon vectors. Hum Gene Ther 1999; 10: 2481–2494.

    Article  CAS  PubMed  Google Scholar 

  27. Wade-Martins R et al. An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 2001; 19: 1067–1070.

    Article  CAS  PubMed  Google Scholar 

  28. Saeki Y et al. Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 2001; 3: 591–601.

    Article  CAS  PubMed  Google Scholar 

  29. Brown KD et al. The ataxia–telangiectasia gene product, a constitutively expressed nuclear protein that is not up-regulated following genome damage. Proc Natl Acad Sci USA 1997; 94: 1840–1845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Watters D et al. Cellular localisation of the ataxia–telangiectasia (ATM) gene product and discrimination between mutated and normal forms. Oncogene 1997; 14: 1911–1921.

    Article  CAS  PubMed  Google Scholar 

  31. Gilad S et al. Ataxia–telangiectasia: founder effect among north African Jews. Hum Mol Genet 1996; 12: 2033–2037.

    Article  Google Scholar 

  32. Lakin ND et al. Analysis of the ATM protein in wild-type and ataxia telangiectasia cells. Oncogene 1996; 13: 2707–2716.

    CAS  PubMed  Google Scholar 

  33. Zhang N et al. An anti-sense construct of full-length ATM cDNA imposes a radiosensitive phenotype on normal cells. Oncogene 1998; 17: 811–818.

    Article  CAS  PubMed  Google Scholar 

  34. Jorgensen TJ, Russell PS, McRae DA . Radioresistant DNA synthesis in SV40-immortalized ataxia telangiectasia fibroblasts. Radiat Res 1995; 143: 219–223.

    Article  CAS  PubMed  Google Scholar 

  35. Sena-Esteves M, Saeki Y, Fraefel C, Breakefield XO . HSV-1 amplicon vectors – simplicity and versatility. Mol Ther 2000; 2: 9–15.

    Article  CAS  PubMed  Google Scholar 

  36. Hobbs II WE, DeLuca NA . Perturbation of cell cycle progression and cellular gene expression as a function of herpes simplex virus ICP0. J Virol 1999; 73: 8245–8255.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Roizman B, Knipe DM . Herpes simplex viruses and their replication. In: Knipe DM, Howley PM (eds). Fields Virology. Lippincott Williams-Wilkins: Philadelphia, 2001, pp 2399–2459.

  38. Krummenacher C et al. Herpes simplex virus glycoprotein D can bind to poliovirus receptor-related protein 1 or herpesvirus entry mediator, two structurally unrelated mediators of virus entry. J Virol 1998; 72: 7064–7074.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Miller CG et al. Development of a syngenic murine B16 cell line-derived melanoma susceptible to destruction by neuroattenuated HSV-1. Mol Ther 2001; 3:160–168.

    Article  CAS  PubMed  Google Scholar 

  40. Maguir-Zeis KA, Bowers WJ, Federoff HJ . HSV vector-mediated gene delivery to the central nervous system. Curr Opin Mol Ther 2001; 3: 482–490.

    Google Scholar 

  41. Mulligan RC . The basic science of gene therapy. Science 1993; 260: 926–932.

    Article  CAS  PubMed  Google Scholar 

  42. Naldini L et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263–267.

    Article  CAS  PubMed  Google Scholar 

  43. Kochanek S et al. A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and B-galactosidase. Proc Natl Acad Sci 1996; 93: 5731–5736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berns KI, Linden RM . The cryptic life style of adeno-associated virus. Bioessays 1995; 17: 237–245.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y et al. Herpes simplex virus type 1/adeno-associated virus rep(+) hybrid amplicon vector improves the stability of transgene expression in human cells by site-specific integration. J Virol 2002; 76: 7150–7162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heister T, Heid I, Ackermann M, Fraefel C . Herpes simplex virus type 1/adeno-associated virus hybrid vectors mediate site-specific integration at the adeno-associated virus preintegration site, AAVS1, on human chromosome 19. J Virol 2002; 76: 7163–7173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kotin RM et al. Site-specific integration of adeno-associated virus. Proc Natl Acad Sci USA 1990; 87: 2211–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bakowska JC et al. Targeted transgene integration into transgenic mouse fibroblasts carrying the full length human AAVS1 locus mediated by HSV/AAV rep+ hybrid amplicon vector. Gene Therapy, in press.

  49. Pear WS, Nolan GP, Scott ML, Baltimore D . Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 1993; 90: 8392–8396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Smith IL, Hardwicke MA, Sandri-Goldin RM . Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 1992; 186: 74–86.

    Article  CAS  PubMed  Google Scholar 

  51. Laemmli UK . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 277: 680–685.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Douglas Olson and Joanne Yetz-Aldape who performed the FACS analysis. We thank Dr Yossi Shiloh for helpful suggestions and Dr Yoshinaga Saeki for advice and reagents. This work was supported by the A-T Children's Project, by NIH Grants CA71387 and CA21765 (to MBK), and by the American Lebanese Syrian Associated Charities of the St Jude Children's Research Hospital.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortés, M., Bakkenist, C., Di Maria, M. et al. HSV-1 amplicon vector-mediated expression of ATM cDNA and correction of the ataxia–telangiectasia cellular phenotype. Gene Ther 10, 1321–1327 (2003). https://doi.org/10.1038/sj.gt.3301996

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301996

Keywords

This article is cited by

Search

Quick links