Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Recombinant adenovirus vectors with knobless fibers for targeted gene transfer

Abstract

Adenoviral vector systems for gene therapy can be much improved by targeting vectors to specific cell types. This requires both the complete ablation of native adenovirus tropism and the introduction of a novel binding affinity in the viral capsid. We reasoned that these requirements could be fulfilled by deleting the entire knob domain of the adenovirus fiber protein and replacing it with two distinct moieties that provide a trimerization function for the knobless fiber and specific binding to the target cell, respectively. To test this concept, we constructed adenoviral vectors carrying knobless fibers comprising the α-helix trimerization domain from MoMuLV envelope glycoprotein. Two mimic targeting ligands, a Myc-epitope and a 6His-tag, were attached via a flexible linker peptide. The targeted knobless fiber molecules were properly expressed and imported into the nucleus of adenovirus packaging cells, where they were incorporated as functional trimers into the adenovirus capsid. Both ligands were exposed on the surface of the virion and were available for specific binding to their target molecules. Moreover, the knobless fibers mediated gene delivery into cells displaying receptors for the coupled ligand. Hence, these knobless fibers are prototype substrates for versatile addition of targeting ligands to generate truly targeted adenoviruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Herz J, Gerard RD . Adenovirus-mediated transfer of low density lipoprotein receptor gene acutely accelerates cholesterol clearance in normal mice Proc Natl Acad Sci USA 1993 90: 2812–2816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Huard J et al. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants Gene Therapy 1995 2: 107–115

    CAS  PubMed  Google Scholar 

  3. Louis N et al. Cell-binding domain of adenovirus serotype 2 fiber J Virol 1994 68: 4104–4106

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Henry LJ et al. Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli J Virol 1994 68: 5239–5246

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Michael SI, Hong JS, Curiel DT, Engler JA . Addition of a short peptide ligand to the adenovirus fiber protein Gene Therapy 1995 2: 660–668

    CAS  PubMed  Google Scholar 

  6. Wickham TJ, Roelvink PW, Brough DE, Kovesdi I . Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types Nat Biotechnol 1996 14: 1570–1573

    Article  CAS  PubMed  Google Scholar 

  7. Wickham TJ et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins J Virol 1997 71: 8221–8229

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshida Y et al. Generation of fiber-mutant recombinant adenoviruses for gene therapy of malignant glioma Hum Gene Ther 1998 9: 2503–2515

    Article  CAS  PubMed  Google Scholar 

  9. Krasnykh V et al. Characterization of an adenovirus vector containing a heterologous peptide epitope in the HI loop of the fiber knob J Virol 1998 72: 1844–1852

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dmitriev I et al. An adenovirus vector with genetically modified fibers demonstrates expanded tropism via utilization of a coxsackievirus and adenovirus receptor-independent cell entry mechanism J Virol 1998 72: 9706–9713

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Roelvink PW et al. Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae Science 1999 286: 1568–1571

    Article  CAS  PubMed  Google Scholar 

  12. Novelli A, Boulanger PA . Deletion analysis of functional domains in baculovirus-expressed adenovirus type 2 fiber Virology 1991 185: 365–376

    Article  CAS  PubMed  Google Scholar 

  13. Hong JS, Engler JA . Domains required for assembly of adenovirus type 2 fiber trimers J Virol 1996 70: 7071–7078

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Santis G et al. Molecular determinants of adenovirus serotype 5 fibre binding to its cellular receptor CAR J Gen Virol 1999 80: 1519–1527

    Article  CAS  PubMed  Google Scholar 

  15. Cohen C, Parry DAD . α-Helical coiled coils and bundles: how to design an a-helical protein Proteins Structure Function, Genetics 1990 7: 1–15

    Article  CAS  Google Scholar 

  16. Fass D, Harrison SC, Kim PS . Retrovirus envelope domain at 1.7 angstrom resolution Nat Struct Biol 1996 3: 465–469

    Article  CAS  PubMed  Google Scholar 

  17. Fallaux FJ et al. Characterization of 911: a new helper cell line for the titration and propagation of early region 1-deletedadenoviral vectors Hum Gene Ther 1996 7: 215–222

    Article  CAS  PubMed  Google Scholar 

  18. Graham FL, Smiley J, Russell WC, Nairn R . Characteristics of a human cell line transformed by DNA from human adenovirus type 5 J Gen Virol 1977 36: 59–74

    Article  CAS  PubMed  Google Scholar 

  19. Mitraki A et al. Unfolding studies of human adenovirus type 2 fibre trimers. Evidence for a stable domain Eur J Biochem 1999 264: 599–606

    Article  CAS  PubMed  Google Scholar 

  20. Douglas JT et al. A system for the propagation of adenoviral vectors with genetically modified receptor specificities Nat Biotechnol 1999 17: 470–475

    Article  CAS  PubMed  Google Scholar 

  21. Xia D, Henry LJ, Gerard RD, Deisenhofer J . Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution Structure 1994 2: 1259–1270

    Article  CAS  PubMed  Google Scholar 

  22. Fass D, Kim PS . Dissection of a retrovirus envelope protein reveals structural similarity to influenza hemagglutinin Curr Biol 1995 5: 1377–1383

    Article  CAS  PubMed  Google Scholar 

  23. van Raaij MJ, Mitraki A, Lavigne G, Cusack S . A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein Nature 1999 401: 935–938

    Article  CAS  PubMed  Google Scholar 

  24. Legrand V et al. Fiberless recombinant adenoviruses: virus maturation and infectivity in the absence of fiber J Virol 1999 73: 907–919

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Von Seggern DJ, Kehler J, Endo RI, Nemerow GR . Complementation of a fibre mutant adenovirus by packaging cell lines stably expressing the adenovirus type 5 fibre protein J Gen Virol 1998 79: 1461–1468

    Article  CAS  PubMed  Google Scholar 

  26. Falgout B, Ketner G . Characterization of adenovirus particles made by deletion mutants lacking the fiber gene J Virol 1988 62: 622–625

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Miyazawa N et al. Fiber swap between adenovirus subgroups B and C alters intracellular trafficking of adenovirus gene transfer vectors J Virol 1999 73: 6056–6065

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Harbury PB, Zhang T, Kim PS, Alber T . A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants Science 1993 262: 1401–1407

    Article  CAS  PubMed  Google Scholar 

  29. Harbury PB, Kim PS, Alber T . Crystal structure of an isoleucine-zipper trimer Nature 1994 371: 80–83

    Article  CAS  PubMed  Google Scholar 

  30. Toes RE et al. Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion Proc Natl Acad Sci USA 1997 94: 14660–14665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He TC et al. A simplified system for generating recombinant adenoviruses Proc Natl Acad Sci USA 1998 95: 2509–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chan S et al. A novel tumour marker related to the c-myc oncogene product Mol Cell Probes 1987 1: 73–82

    Article  CAS  PubMed  Google Scholar 

  33. Douglas JT et al. Targeted gene delivery by tropism-modified adenoviral vectors Nat Biotechnol 1996 14: 1574–1578

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Curiel and Joanne Douglas, Gene Therapy Center UAB, Birmingham, Alabama for providing the 293.HissFv.rec cells and 1D6.14 MoAb; and Frits Fallaux, Leiden University Medical Center, The Netherlands for plasmid pMad5. This work was supported by the Netherlands Organization for Scientific Research (Spinoza Award 1997).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Beusechem, V., van Rijswijk, A., van Es, H. et al. Recombinant adenovirus vectors with knobless fibers for targeted gene transfer. Gene Ther 7, 1940–1946 (2000). https://doi.org/10.1038/sj.gt.3301323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301323

Keywords

This article is cited by

Search

Quick links