Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Signaling antibodies complexed with adenovirus circumvent CAR and integrin interactions and improve gene delivery

Abstract

Current adenoviral (Ad) vectors cannot be targeted to specific cell types due to the widespread distribution of the Ad receptor (CAR). Moreover, CAR and/or internalization receptors (αv integrins) are absent or present at low levels on some cell types, rendering them resistant to Ad-mediated gene delivery. To address these problems, we have developed a novel vector targeting approach that takes advantage of the common cell signaling pathways initiated by ligation of αv integrins and growth factor receptors. Recombinant growth factor/cytokines (TNF-α, IGF-1, EGF) which trigger phosphatidylinositol-3-OH kinase (PI3K) activation, a signaling molecule involved in adenovirus internalization, were fused to a monoclonal antibody specific for the viral penton base. Ad vectors complexed with these bifunctional mAbs increased gene delivery 10 to 50-fold to human melanoma cells lacking αv integrins. The bifunctional mAbs also enhanced gene delivery by fiberless adenovirus particles which cannot bind to CAR. Improved gene delivery correlated with increased virus internalization and attachment as well as PI3K activity. The use of bifunctional mAbs to trigger specific cell signaling pathways offers a widely applicable method for bypassing the normal Ad receptors in gene delivery and potentially increasing the selectivity of gene transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Bilbao G et al. Targeted adenoviral vectors for cancer gene therapy Adv Exp Med Biol 1998 451: 365–374

    Article  CAS  PubMed  Google Scholar 

  2. Gomez-Navarro J et al. Gene therapy for cancer Eur J Cancer 1999 35: 867–885

    Article  CAS  PubMed  Google Scholar 

  3. Kay MA et al. Gene therapy Proc Natl Acad Sci USA 1997 94: 12744–12746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bergelson JM et al. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5 Science 1997 275: 1320–1323

    Article  CAS  PubMed  Google Scholar 

  5. Tomko RP et al. HCAR and MAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses Proc Natl Acad Sci USA 1997 94: 3352–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wickham TJ et al. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  CAS  PubMed  Google Scholar 

  7. Zabner J et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis Cell 1993 75: 207–216

    Article  CAS  PubMed  Google Scholar 

  8. Crystal RG et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis Nat Genet 1994 8: 42–51

    Article  CAS  PubMed  Google Scholar 

  9. Goldman MJ, Wilson JM . Expression of αvβ5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway J Virol 1995 69: 5951–5958

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Grubb BR et al. Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans Nature 1994 371: 802–806

    Article  CAS  PubMed  Google Scholar 

  11. Krasnykh VN et al. Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism J Virol 1996 70: 6839–6846

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vigne E et al. RGD inclusion in the hexon monomer provides adenovirus type 5-based vectors with a fiber knob-independent pathway for infection J Virol 1999 73: 5156–5161

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Watkins SJ et al. The ‘adenobody’ approach to viral targeting: specific and enhanced adenoviral gene delivery Gene Therapy 1997 4: 1004–1012

    Article  CAS  PubMed  Google Scholar 

  14. Gu DL et al. Fibroblast growth factor 2 retargeted adenovirus has redirected cellular tropism: evidence for reduced toxicity and enhanced antitumor activity in mice Cancer Res 1999 59: 2608–2614

    CAS  PubMed  Google Scholar 

  15. Douglas JT et al. Targeted gene delivery by tropism-modified adenoviral vectors Nat Biotechnol 1996 14: 1574–1578

    Article  CAS  PubMed  Google Scholar 

  16. Wickham TJ et al. Adenovirus targeted to heparan-containing receptors increases its gene delivery efficiency to multiple cell types Nat Biotechnol 1996 14: 1570–1573

    Article  CAS  PubMed  Google Scholar 

  17. Patterson S, Russell, WC . Ultrastructural and immunofluorescence studies of early events in adenovirus-HeLa cell interactions J Gen Virol 1983 64: 1091–1099

    Article  CAS  PubMed  Google Scholar 

  18. Wang K et al. Adenovirus internalization and infection required dynamin J Virol 1998 72: 3455–3458

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Li E et al. Adenovirus endocytosis via αv integrins requires phosphoinositide-3-OH-kinase J Virol 1998 72: 2055–2061

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li E et al. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases J Virol 1998 72: 8806–8812

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dedhar S et al. Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling Trends Cell Biol 1999 9: 319–323

    Article  CAS  PubMed  Google Scholar 

  22. Giancotti FG et al. Integrin signaling Science 1999 285: 1028–1032

    Article  CAS  PubMed  Google Scholar 

  23. Hotamisligil GS et al. Tumor necrosis factor alpha inhibits signaling from the insulin receptor Proc Natl Acad Sci USA 1994 91: 4854–4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo D, Donner DB . Tumor necrosis factor promotes phosphorylation and binding of insulin receptor substrate 1 to phosphatidylinositol 3-kinase in 3T3-L1 adipocytes J Biol Chem 1996 271: 615–618

    Article  CAS  PubMed  Google Scholar 

  25. Pomerance M et al. Effects of growth factors on phosphatidylinositol-3-kinase in astroglial cells J Neurosci Res 1995 40: 737–746

    Article  CAS  PubMed  Google Scholar 

  26. Kotani K et al. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling EMBO J 1994 13: 2313–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu P et al. Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors Mol Cell Biol 1992 12: 981–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stewart PL et al. Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization EMBO J 1997 16: 1189–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Felding-Habermann B et al. Involvement of integrin αv gene expression in human melanoma tumorigenicity J Clin Invest 1992 89: 2018–2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Von Seggern DJ et al. A helper-independent adenovirus vector with E1,E3, and fiber deleted: Structure and infectivity of fiberless particles J Virol 1999 73: 1601–1608

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Legrand V et al. Fiberless recombinant adenoviruses: virus maturation and infectivity in the absence of fiber J Virol 1999 73: 907–919

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Davison E et al. Integrin α5β1-mediated adenovirus infection is enhanced by the integrin-activating antibody TS2/16 J Virol 1997 71: 6204–6207

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Summerford C et al. αvβ5 integrin: a co-receptor for adeno-associated virus type 2 infection Nature Med 1999 5: 78–82

    Article  CAS  PubMed  Google Scholar 

  34. Dramsi S, Cossart P . Intracellular pathogens and the actin cytoskeleton Annu Rev Cell Dev Biol 1998 14: 137–166

    Article  CAS  PubMed  Google Scholar 

  35. Uematsu Y . A novel and rapid cloning method for the T-cell receptor variable region sequences Immunogenetics 1991 34: 174–178

    Article  CAS  PubMed  Google Scholar 

  36. Mathias P et al. Interactions of soluble recombinant integrin αvβ5 with human adenoviruses J Virol 1998 72: 8669–8675

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiang J et al. Genetic engineering of a recombinant fusion possessing anti-tumor F(ab′) 2 and tumor necrosis factor J Biotechnol 1997 53: 3–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants RO1 EY11431 and RO1 HL54352 from the National Institutes of Health and from SFP1089 from the Novartis Corporation. E Li was supported by NIH T32 AI07354. We would like to thank Catalina Hope and Joan Gausepohl for preparation of this manuscript. This is manuscript No. 12865 -IMM at The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, E., Brown, S., Von Seggern, D. et al. Signaling antibodies complexed with adenovirus circumvent CAR and integrin interactions and improve gene delivery. Gene Ther 7, 1593–1599 (2000). https://doi.org/10.1038/sj.gt.3301271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301271

Keywords

This article is cited by

Search

Quick links